IDEC

Think Automation and beyond....

IDEC Hydraulic-Magnetic Circuit Breakers
NC1V Series

Hydraulic-Magnetic Circuit Breakers
Using a hydraulic-magnetic tripping method ensures calibration of the NC1V Circuit Breaker is unaffected by ambient temperature. The NC1V series will carry their full rated current continuously over a wide temperature range, from -10 to $60^{\circ} \mathrm{C}$, providing a more reliable and accurate system. With many other available features, make NC1V Circuit Breakers your choice to provide more value for your investment.

Reliable, safe and accurate

NC1V Circuit Breakers

- Hydraulic-magnetic tripping system
- Slim housing design; 1,2 , and 3 -pole
- Cost-effective fuse block replacement - better accuracy over temperature
- Flat retractable lever for safety operations
- Spring-up terminals allow for use of ring terminals
- DIN rail or direct panel mount
- Optional built-in auxiliary or alarm controls - UL1077

Auxiliary or Alarm Contact
(Shown without terminal cove

Internal Circuits 1 -pole			
	NC1V-1111 (With auxiliary contact)	$\begin{aligned} & \text { NC1V-1121 } \\ & \text { (With alarm contact) } \\ & \text { InF One alarm contact. } \end{aligned}$	NC1V-1500 (Relay Trip
	LINE One auxiliay conlact.		
		\rangle	\bigsqcup_{0}
			$\square^{\circ} \mathrm{C}$
			\square

Overcurrent-Time Delay Characteristics (sec at $40^{\circ} \mathrm{C}$) [vertical mounting]

tem	Time Delay Curve	Percent of Rated Current								
		100\%	125\%	150\%	175\%	200\%	400\%	600\%	800\%	1000\%
	S (instantaneous)	No TRP	-	$\begin{aligned} & { }^{*} .005 \\ & \text { to } 0.1 \end{aligned}$	$\begin{aligned} & 0.003 \\ & \text { to } 0.06 \end{aligned}$	$\begin{aligned} & 0.0027 \\ & \text { to } 0.05 \end{aligned}$	$\begin{aligned} & 0.002 \\ & \text { to } 0.03 \end{aligned}$	$\begin{aligned} & \begin{array}{c} 0.002 \\ \text { to } 0.028 \end{array} \end{aligned}$	$\begin{aligned} & 0.002 \\ & \text { to } 0.022 \end{aligned}$	$\begin{gathered} 0.002 \\ \text { to } 0.022 \end{gathered}$
	A (medium)	notrip	*25 to 240	16 to 140	-	6 to 32	0.404	$\begin{aligned} & 0.0055 \\ & \text { to } 0.5 \end{aligned}$	$\begin{aligned} & 0.000 \\ & \text { to } 0.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to0.0. } \end{aligned}$
	M (sow)	No TRPP	*60 to 600	30 to 200	-	9 to 60	0.4 to 10	$\begin{aligned} & 0.006 \\ & \text { to } 0.5 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$
	With Inertia Pelay	No TRiP	25 to 240	-	-	6 to 32	0.8006	$\begin{aligned} & 0.09 \\ & \text { to } 0.5 .5 \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } 0.8 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \text { to } 0.0 \end{aligned}$
	With Inertia Delay	No TRiP	60 to 600	-	-	10 to 60	0.8 to 10	$\begin{aligned} & \substack{0.06 \\ \text { to4. }} \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } \end{aligned}$	$\begin{aligned} & 0.01 \\ & \text { to } 0.75 \end{aligned}$

Time Delay Curves at $40^{\circ} \mathrm{C}$

Note: The entires staded area applies to AC.

800.262 .4332

www.IDEC.com/circuitbreaker

Time Delay Curve and Ambient Temperature
NC1V circuit breakers employ an electromagnetic tripping system, where the rated current (trip current) is not affected by ambient temperatures. But, the time delay may vary with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in a shorter delay, whereas at lower temperatures, the delay will be longer.

Temperature Correction Curve

The time delay curves on the preceding page are measured at $40^{\circ} \mathrm{C}$. With reference to the following curves, time delays can be corrected according to ambient temperature.

The time delay is based on an ambient temperature of $40^{\circ} \mathrm{C}$. Time de lays at other temperatures are corrected according to the temperature orrection curve. The time delay of the instantaneous time delay curve S) is not affected by the ambient temperature.

When operating temperature exceeds	Operating Temp.	Derating Factor
$40^{\circ} \mathrm{C}$ derate the rated current ty	$50^{\circ} \mathrm{C}$	0.9
multitlying the derating factor shown	$55^{\circ} \mathrm{C}$	0.8
on the right.	$60^{\circ} \mathrm{C}$	0.7

mpedance and Coil Resistance

RatedCurrent	For AC $50 / 60 \mathrm{~Hz}$ Impedance (Ω)		$\begin{gathered} \text { For DC } \\ \text { Resistance (} \Omega \text {) } \end{gathered}$	
	Curve S	Curves A, M	Curve S	Curves A, M
0.1A	66.0	116.0	43.0	106.0
0.3 A	6.6	11.0	4.1	10.0
0.5 A	1.92	3.65	0.86	3.40
1A	0.50	0.93	0.25	0.90
2 A	0.16	0.27	0.11	0.25
3 A	0.07	0.12	0.050	0.11
5 A	0.025	0.050	0.015	0.045
7A	0.014	0.027	0.011	0.025
10A	0.007	0.021	0.005	0.020
15 A	0.006	0.010	0.005	0.009
20 A	0.005	0.006	0.004	0.005
25A	0.004	0.005	0.004	0.005
30A	0.003	0.004	0.003	0.004
Toleance: \pm	p to 20A),			

Inertia Dela

Inertia delay is designed not to trip on a non-repeating single pulse of 20 times the rated current (peak value) for a duration of 8 ms . In addition, circuit breakers equipped with inertia delay do not respond to high inrush currents caused by transformer or lamp loads, but perform the specified interruption on subsequent overcurrents. Inertia delay is available on AC circuits, and is not available with the series trip curve S (instantaneous).

Relay Trip (Voltage Trip) at $25^{\circ} \mathrm{C}$

Tripping Voltage	For DC Resistance (Ω)
24.88 V	100.0
Toleanae.	

Voltage Drop Due to Coil Resistance or Impedance

The internal resistance or impedance of a circuit breaker tends to be larger for a smaller-rated current. Therefore, when circuit breakers with a small rated current are used, voltage drop should be taken into consideration. Internal resistance also varies with time dela curves, which should also be considered during installation.

Dimensions (mm)

1-pole
NC1-1100

${ }_{175}^{2.20 .5 \text { Holes }}$

NC1V-1500 (Relay Trip)

NC1V-1111 (Aviar Contact NC1V-1121/Alam Contar

(2) Lat M4 Mounting Screw

2 Pole

NC1-2100

3-pole

NC1V-3100

NC1V-3500 (Relay Trip

Instructions

Installation Angle
Tripping method is hydraulic magnetic. Minimum operating current varies with installation angle. Operating currents are influenced by the weight of movable iron core. With reference to the following figures,
correct the rated current.

Minimum operating current is calculated from the following formula: (Minimum operating current) $=$ (Rated current) $\times($ Correction factor by installation angle) \times (Reference minimum tripping current rate)

NC1V-3111 (one auxiliary contact). NC1V-3112 (two auxiliary contacts
NC1V-3113 (three axxiliar contacts). NC1V-3121 (one alarm Contact) NCIV-3.313 (ine auxiliary and one alarm contact)
NC1V-3132 (two auxiliary and one alarm contacts)

Mounting Hole Layout (M4 Mounting Screws)

DIN Rail Installatio

1. Fasten the DIN rail securely
2. With the latch facing downward, install the NC1V circuit breaker on the DIN rail as shown below.

DIN Rail Removal

Using a flat screwdriver, pull the latch on the circuit breaker to remove from the DIN rail.

Applicable Wire and Crimp Terminals

Terminal	Terminal Screw	Connectable Wire Size (mm)	$\begin{gathered} \text { Applicable } \\ \text { Crimping } \\ \text { Terminal } \end{gathered}$	$\begin{gathered} \text { Tightening } \\ \text { Torquee } \\ \text { (N.m) } \end{gathered}$
	Spring-up, fingersafe, slotted Phillips screw with square wash(up to 20A)	0.25 to 0.65	R1.25-4	1 to 1.4
		1.04020 .63	R2-4	
		2.63 to 0.64	R5.5-4	
	Spring-up fingersafe terminal (25A and 30A)	0.25 to 1.65	R1.25-5	1.8 to 2.2
		1.04020 .63	R2-5	
		2.63 to 6.6	R5.5-5	
	Slotted Phillips screw withsquare washer	0.25 to 1.65	81.25-3.5	0.7 to 0.9
		1.04020 .63	R2-3.5	

-For wiring the main circuit terminal, use the applicable crimp terminals and tighten to the recommended torque.
-When using the NC1V circuit breaker as CSA-certified product, use with CSA-crtified
-When using the NC1V circuit breaker as UL-listed product, use with UL-listed crimp terminal.

Panel Mounting Screws (not supplied)
 Srew Type Tightening Torque
 M4
 0.8 to 1.0 N m
 Shape

Product Markings (Example: NC1V-1111-30AA)

Installation of Auxiliary/Alarm Terminal Cover

After wiring the terminals, install the terminal cover by aligning with the circuit breaker as shinals, ins

PS6R: World's First Expandable Power Supply

Less cost + less space = more savings! More value!
Replace 3 full-priced, space-consuming power supplies with 1.
Reduce the amount of space needed for wiring and installation
The addition of a DC-DC converter expansion module will eliminate the need for multiple power supplies or snap on a branch terminal module to replace multiple terminal blocks.

Flexibility, expandability, versatility
Add DC-DC converter units for up to three separate output voltages (5,12, or 15 V). Or, add a branch terminal module to get two additional + and - slots.

Energy-saving 93\% Efficiency
Save energy and generate less heat in the cabinet, reducing temperature stress on critical components.

Easy Maintenance - LED Indicator
DC low or ON indicator.

Technical support:

support@idec.com

Sales support:

sales@idec.com
800.262 .4332
www.IDEC.com/usa

www.IDEC.com

USA	Japan	China	Hong Kong	Taiwan
IDEC Corporation	IDEC Corporation	IDEC (Beijing) Corporation	IDEC (H.K.) Co., Ltd.	IDEC Taiwan Corporation
Tel: (408) 747-0550	Tel: +81-6-6398-2527	Tel: +86-10-6581-6131	Tel: +852-2803-8989	Tel: +886-2-2698-3929
opencontact@IDEC.com	marketing@IDEC.co.jp	IDEC (Shanghai) Corporation	info@k.IDEC.com	service@tw.IDEC.com
Canada	Germany	Tel: +86-21-6135-1515	Singapore	Thailand
IDEC Canada Ltd.	IDEC Elektrotechnik GmbH	idec@cn.IDEC.com	IDEC Asia Pte. Ltd.	IDEC Asia (Thailand) Co., Ltd.
Tel: (905) 890-8561	Tel: +49-40-253054-0	IDEC (Shenzhen) Corporation	Tel: +65-6746-1155	Tel: +662-392-9765
sales@ca.IDEC.com	service@IDEC.de	Tel: +86-755-8356-2977	info@sg.IDEC.com	sales@th.IDEC.com
Australia				United Kingdom
IDEC Australia Pty. Ltd.				IDEC Electronics Ltd.
Tel: +61-3-8523-5900	©2014 IDEC Corporation. All Rights Reserved. Catalog No. NC9Y-B100-2 08/14 5K			Tel: +44-1256-321000
sales@au.IDEC.com				sales@uk.IDEC.com

IDEC

Think Automation and beyond....

IDEC Hydraulic-Magnetic Circuit Breakers
NC1V Series

Hydraulic-Magnetic Circuit Breakers
Using a hydraulic-magnetic tripping method ensures calibration of the NC1V Circuit Breaker is unaffected by ambient temperature. The NC1V series will carry their full rated current continuously over a wide temperature range, from -10 to $60^{\circ} \mathrm{C}$, providing a more reliable and accurate system. With many other available features, make NC1V Circuit Breakers your choice to provide more value for your investment.

Reliable, safe and accurate

NC1V Circuit Breakers

- Hydraulic-magnetic tripping system
- Slim housing design; 1,2 , and 3 -pole
- Cost-effective fuse block replacement - better accuracy over temperature
- Flat retractable lever for safety operations
- Spring-up terminals allow for use of ring terminals
- DIN rail or direct panel mount
- Optional built-in auxiliary or alarm controls - UL1077

Auxiliary or Alarm Contact
(Shown without terminal cove

Internal Circuits 1 -pole			
	NC1V-1111 (With auxiliary contact)	$\begin{aligned} & \text { NC1V-1121 } \\ & \text { (With alarm contact) } \\ & \text { InF One alarm contact. } \end{aligned}$	NC1V-1500 (Relay Trip
	LINE One auxiliay conlact.		
		\rangle	\bigsqcup_{0}
			$\square^{\circ} \mathrm{C}$
			\square

Overcurrent-Time Delay Characteristics (sec at $40^{\circ} \mathrm{C}$) [vertical mounting]

tem	Time Delay Curve	Percent of Rated Current								
		100\%	125\%	150\%	175\%	200\%	400\%	600\%	800\%	1000\%
	S (instantaneous)	No TRP	-	$\begin{aligned} & { }^{*} .005 \\ & \text { to } 0.1 \end{aligned}$	$\begin{aligned} & 0.003 \\ & \text { to } 0.06 \end{aligned}$	$\begin{aligned} & 0.0027 \\ & \text { to } 0.05 \end{aligned}$	$\begin{aligned} & 0.002 \\ & \text { to } 0.03 \end{aligned}$	$\begin{aligned} & \begin{array}{c} 0.002 \\ \text { to } 0.028 \end{array} \end{aligned}$	$\begin{aligned} & 0.002 \\ & \text { to } 0.022 \end{aligned}$	$\begin{gathered} 0.002 \\ \text { to } 0.022 \end{gathered}$
	A (medium)	notrip	*25 to 240	16 to 140	-	6 to 32	0.404	$\begin{aligned} & 0.0055 \\ & \text { to } 0.5 \end{aligned}$	$\begin{aligned} & 0.000 \\ & \text { to } 0.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to0.0. } \end{aligned}$
	M (sow)	No TRPP	*60 to 600	30 to 200	-	9 to 60	0.4 to 10	$\begin{aligned} & 0.006 \\ & \text { to } 0.5 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$
	With Inertia Pelay	No TRiP	25 to 240	-	-	6 to 32	0.8006	$\begin{aligned} & 0.09 \\ & \text { to } 0.5 .5 \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } 0.8 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \text { to } 0.0 \end{aligned}$
	With Inertia Delay	No TRiP	60 to 600	-	-	10 to 60	0.8 to 10	$\begin{aligned} & \substack{0.06 \\ \text { to4. }} \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } \end{aligned}$	$\begin{aligned} & 0.01 \\ & \text { to } 0.75 \end{aligned}$

Time Delay Curves at $40^{\circ} \mathrm{C}$

Note: The entires staded area applies to AC.

800.262 .4332

www.IDEC.com/circuitbreaker

Time Delay Curve and Ambient Temperature
NC1V circuit breakers employ an electromagnetic tripping system, where the rated current (trip current) is not affected by ambient temperatures. But, the time delay may vary with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in a shorter delay, whereas at lower temperatures, the delay will be longer.

Temperature Correction Curve

The time delay curves on the preceding page are measured at $40^{\circ} \mathrm{C}$. With reference to the following curves, time delays can be corrected according to ambient temperature.

The time delay is based on an ambient temperature of $40^{\circ} \mathrm{C}$. Time de lays at other temperatures are corrected according to the temperature orrection curve. The time delay of the instantaneous time delay curve S) is not affected by the ambient temperature.

When operating temperature exceeds	Operating Temp.	Derating Factor
$40^{\circ} \mathrm{C}$ derate the rated current ty	$50^{\circ} \mathrm{C}$	0.9
multitlying the derating factor shown	$55^{\circ} \mathrm{C}$	0.8
on the right.	$60^{\circ} \mathrm{C}$	0.7

mpedance and Coil Resistance

RatedCurrent	For AC $50 / 60 \mathrm{~Hz}$ Impedance (Ω)		$\begin{gathered} \text { For DC } \\ \text { Resistance (} \Omega \text {) } \end{gathered}$	
	Curve S	Curves A, M	Curve S	Curves A, M
0.1A	66.0	116.0	43.0	106.0
0.3 A	6.6	11.0	4.1	10.0
0.5 A	1.92	3.65	0.86	3.40
1A	0.50	0.93	0.25	0.90
2 A	0.16	0.27	0.11	0.25
3 A	0.07	0.12	0.050	0.11
5 A	0.025	0.050	0.015	0.045
7A	0.014	0.027	0.011	0.025
10A	0.007	0.021	0.005	0.020
15 A	0.006	0.010	0.005	0.009
20 A	0.005	0.006	0.004	0.005
25A	0.004	0.005	0.004	0.005
30A	0.003	0.004	0.003	0.004
Toleance: \pm	p to 20A),			

Inertia Dela

Inertia delay is designed not to trip on a non-repeating single pulse of 20 times the rated current (peak value) for a duration of 8 ms . In addition, circuit breakers equipped with inertia delay do not respond to high inrush currents caused by transformer or lamp loads, but perform the specified interruption on subsequent overcurrents. Inertia delay is available on AC circuits, and is not available with the series trip curve S (instantaneous).

Relay Trip (Voltage Trip) at $25^{\circ} \mathrm{C}$

Tripping Voltage	For DC Resistance (Ω)
24.88 V	100.0
Toleanae.	

Voltage Drop Due to Coil Resistance or Impedance

The internal resistance or impedance of a circuit breaker tends to be larger for a smaller-rated current. Therefore, when circuit breakers with a small rated current are used, voltage drop should be taken into consideration. Internal resistance also varies with time dela curves, which should also be considered during installation.

Dimensions (mm)

1-pole
NC1-1100

${ }_{175}^{2.20 .5 \text { Holes }}$

NC1V-1500 (Relay Trip)

NC1V-1111 (Aviar Contact NC1V-1121/Alam Contar

(2) Lat M4 Mounting Screw

2 Pole

NC1-2100

3-pole

NC1V-3100

NC1V-3500 (Relay Trip

Instructions

Installation Angle
Tripping method is hydraulic magnetic. Minimum operating current varies with installation angle. Operating currents are influenced by the weight of movable iron core. With reference to the following figures,
correct the rated current.

Minimum operating current is calculated from the following formula: (Minimum operating current) $=$ (Rated current) $\times($ Correction factor by installation angle) \times (Reference minimum tripping current rate)

NC1V-3111 (one auxiliary contact). NC1V-3112 (two auxiliary contacts
NC1V-3113 (three axxiliar contacts). NC1V-3121 (one alarm Contact) NCIV-3.313 (ine auxiliary and one alarm contact)
NC1V-3132 (two auxiliary and one alarm contacts)

Mounting Hole Layout (M4 Mounting Screws)

DIN Rail Installatio

1. Fasten the DIN rail securely
2. With the latch facing downward, install the NC1V circuit breaker on the DIN rail as shown below.

DIN Rail Removal

Using a flat screwdriver, pull the latch on the circuit breaker to remove from the DIN rail.

Applicable Wire and Crimp Terminals

Terminal	Terminal Screw	Connectable Wire Size (mm)	$\begin{gathered} \text { Applicable } \\ \text { Crimping } \\ \text { Terminal } \end{gathered}$	$\begin{gathered} \text { Tightening } \\ \text { Torquee } \\ \text { (N.m) } \end{gathered}$
	Spring-up, fingersafe, slotted Phillips screw with square wash(up to 20A)	0.25 to 0.65	R1.25-4	1 to 1.4
		1.04020 .63	R2-4	
		2.63 to 0.64	R5.5-4	
	Spring-up fingersafe terminal (25A and 30A)	0.25 to 1.65	R1.25-5	1.8 to 2.2
		1.04020 .63	R2-5	
		2.63 to 6.6	R5.5-5	
	Slotted Phillips screw withsquare washer	0.25 to 1.65	81.25-3.5	0.7 to 0.9
		1.04020 .63	R2-3.5	

-For wiring the main circuit terminal, use the applicable crimp terminals and tighten to the recommended torque.
-When using the NC1V circuit breaker as CSA-certified product, use with CSA-crtified
-When using the NC1V circuit breaker as UL-listed product, use with UL-listed crimp terminal.

Panel Mounting Screws (not supplied)
 Srew Type Tightening Torque
 M4
 0.8 to 1.0 N m
 Shape

Product Markings (Example: NC1V-1111-30AA)

Installation of Auxiliary/Alarm Terminal Cover

After wiring the terminals, install the terminal cover by aligning with the circuit breaker as shinals, ins

PS6R: World's First Expandable Power Supply

Less cost + less space = more savings! More value!
Replace 3 full-priced, space-consuming power supplies with 1.
Reduce the amount of space needed for wiring and installation
The addition of a DC-DC converter expansion module will eliminate the need for multiple power supplies or snap on a branch terminal module to replace multiple terminal blocks.

Flexibility, expandability, versatility
Add DC-DC converter units for up to three separate output voltages (5,12, or 15 V). Or, add a branch terminal module to get two additional + and - slots.

Energy-saving 93\% Efficiency
Save energy and generate less heat in the cabinet, reducing temperature stress on critical components.

Easy Maintenance - LED Indicator
DC low or ON indicator.

Technical support:

support@idec.com

Sales support:

sales@idec.com
800.262 .4332
www.IDEC.com/usa

www.IDEC.com

USA	Japan	China	Hong Kong	Taiwan
IDEC Corporation	IDEC Corporation	IDEC (Beijing) Corporation	IDEC (H.K.) Co., Ltd.	IDEC Taiwan Corporation
Tel: (408) 747-0550	Tel: +81-6-6398-2527	Tel: +86-10-6581-6131	Tel: +852-2803-8989	Tel: +886-2-2698-3929
opencontact@IDEC.com	marketing@IDEC.co.jp	IDEC (Shanghai) Corporation	info@k.IDEC.com	service@tw.IDEC.com
Canada	Germany	Tel: +86-21-6135-1515	Singapore	Thailand
IDEC Canada Ltd.	IDEC Elektrotechnik GmbH	idec@cn.IDEC.com	IDEC Asia Pte. Ltd.	IDEC Asia (Thailand) Co., Ltd.
Tel: (905) 890-8561	Tel: +49-40-253054-0	IDEC (Shenzhen) Corporation	Tel: +65-6746-1155	Tel: +662-392-9765
sales@ca.IDEC.com	service@IDEC.de	Tel: +86-755-8356-2977	info@sg.IDEC.com	sales@th.IDEC.com
Australia				United Kingdom
IDEC Australia Pty. Ltd.				IDEC Electronics Ltd.
Tel: +61-3-8523-5900	©2014 IDEC Corporation. All Rights Reserved. Catalog No. NC9Y-B100-2 08/14 5K			Tel: +44-1256-321000
sales@au.IDEC.com				sales@uk.IDEC.com

