Technical Data

Materials

Carbon Steel

Channels made from high-quality carbon steel are continuously roll formed to precise dimensions. By cold working the steel mechanical properties are increased, allowing lightweight structures to carry the required load. Corrosion resistance of carbon steel varies widely with coating and alloy. See "Finishes" for more detailed information.

Stainless Steel

Stainless steel channel is available in AISI Type 304 or 316 material. Both are non-magnetic and belong to the austenitic stainless steels group, based on alloy content and crystallographic structure. Like carbon steel, stainless steel exhibits increased strength when cold worked by roll-forming.

Several conditions make the use of stainless steel ideal. These include reducing long term maintenance costs, high ambient temperatures, appearance, and stable structural properties such as yield strength, and high creep strength.

Type 304 resists most organic chemicals, dyestuffs and a wide variety of inorganic chemicals at elevated or cryogenic temperatures. Type 316 contains slightly more nickel and adds molybdenum to give it better corrosion resistance in chloride and sulfuric acid environments. For more information concerning the differences between types 304 and 316, visit www.bline.com.

Aluminum

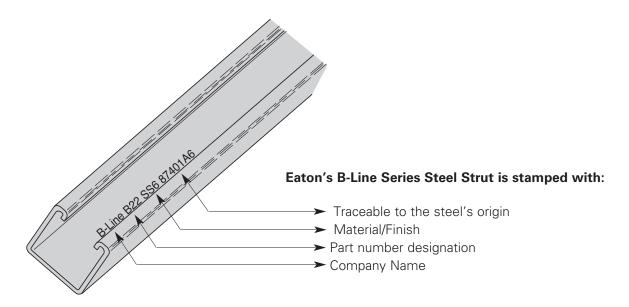
Standard aluminum channel is extruded from aluminum alloy 6063-T6. Strut fittings are made from aluminum alloy 5052-H32.

The high strength to weight ratio of channel made of aluminum helps greatly reduce the overall cost of installation through ease of handling and field cutting.

Aluminum owes its excellent corrosion resistance to its ability to form an aluminum oxide film that immediately reforms when scratched or cut. In most outdoor applications, aluminum has excellent resistance to "weathering". The resistance to chemicals, indoor or outdoor, can best be determined by tests conducted by the user with exposure to the specific conditions for which it is intended. The corrosion resistance of aluminum to some commonly known chemicals is shown in the Corrosion Chart on page 10. For further information, contact us or the Aluminum Association.

Fiberglass

We offer two fire retardant (FR) resins for strut systems, polyester and vinyl ester. Both resins are ideal for corrosive environments or nonconductive applications with moderate strength requirements. Some common types of environments where Vinyl Ester Resins are recommended, that Poly Esters are not, are paper mills, most any metal plating operation and any condition with

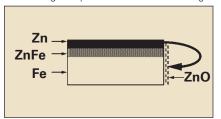

concentrated levels of Chlorine, [Cl⁻]. Please consult our fiberglass corrosion resistance charts on page 184 for specific chemical recommendation data.

Unlike other base materials depicted in this catalog, fiberglass exhibits unique physical property changes when operating in elevated temperature conditions that are a fraction of increase compared to steel or aluminum. Thus, it is advised against using fiberglass in temperatures greater than 200° F.

Please refer to the "Corrosion Resistance Guide" on page 184 for specific applications.

The fiberglass strut systems are manufactured from glass fiber-reinforced plastic shapes that meet ASTM E-84, Class 1 Flame Rating and self-extinguishing requirements of ASTM D-635. A surface veil is applied during pultrusion to insure a resin-rich surface and ultraviolet resistance.

While polyester is sufficient for most uses, vinyl ester is suitable for a broader range of environments.



Finishes

Zinc Coatings

Zinc protects steel in two ways. First it protects the steel as a coating, and second acts as a sacrificial anode to repair bare areas such as cut edges, scratches, and gouges. The corrosion protection of zinc is directly related to its thickness and the environment. This means a .2 mil coating will last twice as long as a .1 mil coating in the same environment.

Galvanizing also protects cut and drilled edges.

Electrogalvanized Zinc

Electrogalvanized Zinc (also known as zinc plated or electroplated) is the process by which a coating of zinc is deposited on the steel by electrolysis from a bath of zinc salts.

A rating of SC3, our standard, provides a minimum zinc coating thickness of .5 mils (excluding hardware, which is SC1 = .2

When exposed to air and moisture, zinc forms a tough, adherent, protective film consisting of a mixture of zinc oxides, hydroxides, and carbonates. This film is a barrier coating which helps slow subsequent corrosive attack on the zinc. This coating is usually recommended for indoor use in relatively dry areas, as it provides ninety-six hours protection in salt spray testing per ASTM B117.

Chromium / Zinc

Chromium / Zinc is a corrosion resistant composition, which was developed to protect fasteners and small bulk items for automotive use. The coating applications have since been extended to larger parts and other markets.

Chromium/Zinc composition is an aqueous coating dispersion containing chromium, proprietary organics, and zinc

This finish provides 720 hours protection in salt spray testing per ASTM B117.

Pre-Galvanized Zinc

(Mill galvanized, hot dip mill galvanized or continuous hot dip galvanized) Pregalvanized steel is produced by coating coils of sheet steel with zinc by continuously rolling the material through molten zinc at the mills. This is also known as mill galvanized or hot dip mill galvanized. These coils are then slit to size and fabricated by roll forming, shearing, punching, or forming to produce our pre-galvanized strut products.

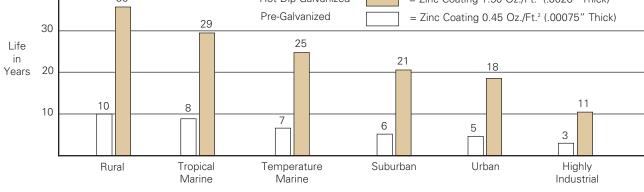
The G90 specification calls for a coating of .90 ounces of zinc per square foot of steel. This results in a coating of .45 ounces per square foot on each side of the sheet. This is important when comparing this finish to hot dip galvanized after fabrication.

During fabrication, cut edges and welded areas are not normally zinc coated; however, the zinc near the uncoated metal becomes a sacrificial anode to protect the bare areas after a short period of time.

Anticipated Life of Zinc Coatings In Various Atmospheric Environments

Hot Dip Galvanized After Fabrication (Hot dip galvanized or batch hot dip galvanized)

Hot dip galvanized strut products are fabricated from steel and then completely immersed in a bath of molten zinc. A metallic bond occurs resulting in a zinc coating that completely coats all surfaces, including edges and welds.


Another advantage of this method is coating thickness. Strut products that are hot dip galvanized after fabrication have a minimum thickness of 1.50 ounces per square foot on each side, or a total 3.0 ounces per square foot of steel, according to ASTM A123.

The zinc thickness is controlled by the amount of time each part is immersed in the molten zinc bath as well as the speed at which it is removed. The term "double dipping" refers to parts too large to fit into the galvanizing kettle and must be dipped one end at a time. It does not refer to extra coating thickness.

The layer of zinc which bonds to steel provides a dual protection against corrosion. It protects first as an overall barrier coating. If this coating happens to be scratched or gouged, zinc's secondary defense is called upon to protect the steel by galvanic action.

Hot-Dip Galvanized After Fabrication is recommended for prolonged outdoor exposure and will usually protect steel for 20 years or more in most atmospheric environments and in many industrial environments. For best results, a zinc rich paint (available from Eaton's B-Line Division) should be applied to field cuts. The zinc rich paint will provide immediate protection for these areas and eliminate the short time period for galvanic action to "heal" the damaged coating.

40 36 Hot Dip Galvanized = Zinc Coating 1.50 Oz./Ft.² (.0026" Thick) Pre-Galvanized 29 30

Environment

DURA GREEN[™] and DURA-COPPER[™] Epoxy Coatings

DURA GREEN and DURA-COPPER epoxy coatings are water borne epoxy coatings applied to B-Line series products by a precisely controlled cathodic electrodeposition process. This process is accomplished using a conveyor to transport channel and fittings through several cleaning, phosphatizing and application stages prior to being baked (See diagram below).

This custom-designed paint system is used for painting all channels, channel combinations, slotted angle, and fittings.

Samples are selected on a routine basis for salt spray (fog) testing to verify the quality of the finish. These tests are performed in accordance with ASTM B117 and evaluated and related according to ASTM D1654 (Tables 1 & 2).

The DURA GREEN and DURA-COPPER epoxy coatings have been tested and listed by Underwriters Laboratories in

accordance with "Standard for Surface Metal Raceway and Fittings, UL5" and "Standard for Pipe Hanger Equipment for Fire Protection Service, UL203".

Due to DURA GREEN's organically based composition, it seats itself into porous surfaces more completely and efficiently than zinc coatings. As these porous caverns are filled along the material profile, the outer finished surface demonstrates an increased smooth uniform plane which produces considerably less off-gasing when tested.

DURA GREEN channel meets or exceeds 100 level clean room standards. This was confirmed by testing the channel in accordance with Boeing (PCL) Standards, which are more stringent and complete than ASTM E595-93. DURA GREEN was found to be a superior finish, due in part to its proven application process.

Salt Spray Test Results


Type of Finish	Unscribed 5% Failure (1)	Scribed ¹ /8" (3.2) Creepage from Scribe (1)
DURA GREEN Epoxy	1000 Hours	312 Hours
Mill Galv. (Pre-Galv.) G90	192 Hours	288 Hours
Perma-Green	438 Hours	231 Hours
Zinc Chromate	36 Hours	96 Hours
Industry Green (Range)	10 to 36 Hours	4 to 30 Hours

(1) All salt spray (fog) tests conducted in accordance with ASTM B117 and evaluated and rated according to ASTM D1654 Tables 1 & 2. Tests are performed and certified by an independent testing laboratory.

DURA GREEN / DURA-COPPER Epoxy Coating Process

Tank 1 The channel and parts are thoroughly cleaned and phosphatized.	Tank 2 A rinse is applied to remove insoluble salts and unreacted phosphates.	Tank 3 A phosphatized sealer is applied to insure corrosion resistance and paint adhesion.	Tank 4 The material moves through clear water rinse to remove excess phosphates.	Tank 5 A pre-deionized rinse prepares the metal for the cathodic electrocoating.	Tank 6 The electro- coating tank applies a uniform coat of epoxy paint to the entire surface.	Tank 7 The first post rinse removes any unelectrically attracted solids.	Tank 8 The final rinse insures a smooth, nonblemish surface.	Bake Oven The curing process takes 20 minutes at a baking temperature of 375° F (199° C).

Metal Framing Channels

Channe

Metal framing channel is cold formed on our modern rolling mills from 12 Ga. (2.6mm), 14 Ga. (1.9mm), and 16 Ga. (1.5mm) low carbon steel strips. A continuous slot with inturned lips provides the ability to make attachments at any point.

Lengths & Tolerances

All channels excluding 'SH' style \pm ¹/8" (3.2mm) on 10' (3.05m) and \pm ³/16" (4.76mm) on 20' (6.09m) All 'SH' channels only \pm ¹/4" (6.35mm) on 10' (3.05m) and \pm ¹/2" (12.70mm) on 20' (6.09m) Custom lengths are available upon request.

Slots

Slotted series of channels offer full flexibility. A variety of pre-punched slot patterns eliminate the need for precise field measuring for hole locations. Slots offer wide adjustments in the alignment and bolt sizing.

Holes

A variety of pre-punched ⁹/16" (14.3 mm) diameter hole patterns are available in our channels. These hole patterns provide an economical alternative to costly field drilling required for many applications.

Knockouts

When used with series B217-20 Closure Strips, knockout channels can be used to provide an economical U.L. listed surface raceway. Channels are furnished with ⁷/8" (22.2 mm) knockouts on 6" (152 mm) centers, allowing for perfect fixture alignment on spans up to 20' (6.09 m).

Materials & Finishes (Unless otherwise noted) Steel: Plain & Pre-galvanized

12 Ga. (2.6), 14 Ga. (1.9) and 16 Ga. (1.5)

Note: A minimum order may apply on special material and finishes.

Design Load (Steel & Stainless Steel)

The design loads given for strut beam loads are based on a simple beam condition using an allowable stress of 25,000 psi. This allowable stress results in a safety factor

Finish Code	Finish	Specification
PLN	Plain	ASTM A1011, 33,000 PSI min. yield
GRN	DURA GREEN™	
GLV	Pre-Galvanized	ASTM A653 33,000 PSI min. yield
HDG	Hot-Dipped Galvanized	ASTM A123
YZN	Yellow Zinc Chromate	ASTM B633 SC3 Type II
SS4	Stainless Steel Type 304	ASTM A240
SS6	Stainless Steel Type 316	ASTM A240
AL	Aluminum	Aluminum 6063-T6

of 1.68. This is based upon virgin steel minimum yield strength of 33,000 psi cold worked during rolling to an average yield stress of 42,000 psi. For aluminum channel loading multiply steel loading by a factor of 0.38.

Welding

Weld spacing is maintained between 2¹/₂ inches (63.5 mm) and 4 inches (101.6 mm) on center. Through high quality control testing of welded channels and continuous monitoring of welding equipment, we provide the most consistent combination channels available today.

Metric

Metric dimensions are shown in parentheses. Unless noted, all metric dimensions are in millimeters.

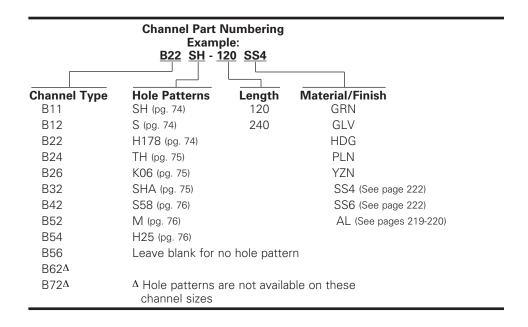
Selection Chart for Channels, Materials and Hole Patterns

		Cha Dimer	nnel Isions	Ma	terial &	Thicknown Stair	nless	SH	Channel S	Hole Pat	ttern **	KO6	
Channel Type	Hei	Height		Width		Alum.	Type 304	Type	9/16" x 1 ¹ /8" slots on 2" centers	¹³ / ₃₂ " x 3" slots	9/16" diameter holes	9/16" diameter on 1 ⁷ /8" centers	7/8" diameter knockouts
	 		L		1	2	<u>3</u>	4				Centers -	
B11	3 ¹ /4"	(82.5)	1 ⁵ /8"	(41.3)	12 Ga.	.105	_	_	1	<u>1</u>	1	_	<u>1</u>
B12	2 ⁷ /16"	(61.9)	1 ⁵ /8"	(41.3)	12 Ga.	.105	_	_	<u>1 2</u>	<u>1</u>	<u>1</u> <u>2</u>	_	<u>1</u> <u>2</u>
B22	1 ⁵ /8"	(41.3)	1 ⁵ /8"	(41.3)	12 Ga.	.105	12 Ga.	12 Ga.	1234	<u>1</u> <u>3</u>	1234	1	<u>1</u> <u>2</u>
B24	1 ⁵ /8"	(41.3)	1 ⁵ /8"	(41.3)	14 Ga.	.080	14 Ga.	14 Ga.	1234	<u>1</u>	1234	-	<u>1</u> <u>2</u>
B26	1 ⁵ /8"	(41.3)	1 ⁵ /8"	(41.3)	16 Ga.	_	_	_	1	<u>1</u>	<u>1</u>	_	<u>1</u>
B32	1 ³ /8"	(34.9)	1 ⁵ /8"	(41.3)	12 Ga.	_	12 Ga.	_	<u>13</u>	<u>1</u>	<u>13</u>	_	1
B42	1"	(25.4)	1 ⁵ /8"	(41.3)	12 Ga.	_	12 Ga.	_	<u>13</u>	<u>1</u>	<u>13</u>	_	1
B52	¹³ /16"	(20.6)	1 ⁵ /8"	(41.3)	12 Ga.	_	12 Ga.	12 Ga.	<u>134</u>	1	1	_	<u>1</u>
B54	¹³ /16"	(20.6)	1 ⁵ /8"	(41.3)	14 Ga.	.080	14 Ga.	14 Ga.	1234	<u>1</u>	1234	_	<u>1</u> <u>2</u>
B56	¹³ /16"	(20.6)	1 ⁵ /8"	(41.3)	16 Ga.	_	_	_	1	<u>1</u>	1	_	1
B62	13/16"	(20.6)	¹³ /16"	(20.6)	18 Ga.	_	_	_	_	_	_	_	_
B72	13/32"	(10.3)	¹³ /16"	(20.6)	18 Ga.	_	_	_	_	_	_	_	_

The selection has been prepared to provide a reference for available channel, materials and hole patterns. Material types available for various hole patterns are defined by numbers 1 thru 4. Some stainless steel channels with hole patterns are available on special order only.

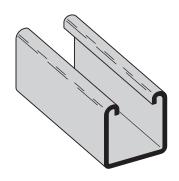
*Metric equivalent for thicknesses shown in chart.

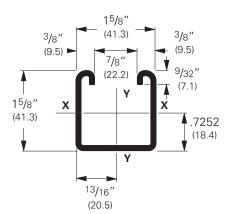
nesses shown in chart. ** $\frac{1}{2}$ - Steel 18 Ga. = 1.2 mm $\frac{2}{2}$ - Aluminum


12 Ga. = 2.6 mm 14 Ga. = 1.9 mm 105 = 2.6 mm

16 Ga. = 1.5 mm

3 - Type 304 Stainless Steel 4 - Type 316 Stainless Steel

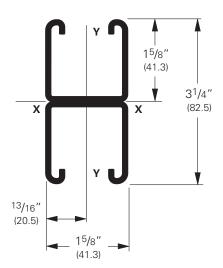

Properties may vary due to commercial tolerances of the material.


.080 = 2.0 mm

B22

- Thickness: 12 Gauge (2.6 mm)
- Standard lengths: 10' (3.05 m) & 20' (6.09 m)
- Standard finishes: Plain, DURA GREEN™, Pre-Galvanized, Hot-Dipped Galvanized, Stainless Steel Type 304 or 316, Aluminum
- Weight: 1.90 Lbs./Ft. (2.83 kg/m)




Note: Aluminum loading, for B22 & B22A, can be determined by multiplying load data times a factor of 0.38

Section Properties X - X Axis						is Y - Y Axis							
Channel	annel Weight		Areas of Section	Momentof Inertia (I)	Section Modulus (S)	Radius of Gyration (r)	Moment of Inertia (I)	Section Modulus (S)	Radius of Gyration (r)				
	lbs./ft. kg	g/m	sq. in. cm ²	in. ⁴ cm ⁴	in. ³ cm ³	in. cm	in. ⁴ cm ⁴	in. ³ cm ³	in. cm				
B22	1.910 (2	2.84)	.562 (3.62)	.1912 (7.96)	.2125 (3.48)	.583 (1.48)	.2399 (9.99)	.2953 (4.84)	.653 (1.66)				
B22A	3.820 (5	5.69)	1.124 (7.25)	.9732 (40.51)	.5989 (9.81)	.931 (2.36)	.4798 (19.97)	.5905 (9.68)	.653 (1.66)				
B22X	6.649 (9	9.89)	1.956 (12.62)	4.1484(172.67)	1.7019 (27.89)	1.456 (3.70)	1.1023 (45.88)	1.2027 (19.71)	.751 (1.91)				

Calculations of section properties are based on metal thicknesses as determined by the AISI Cold-Formed Steel Design Manual.

B22AWt. 3.80 Lbs./Ft. (5.65 kg/m)

B22 Beam Loading Data

Beam Loading

Ream	Span	Channel	Unifor	m I oad a	nd Deflec	tion	Unifo 1/240		@ Deflecti 1/360	
In.	mm	Style	Lbs.	kN	In.	mm	Lbs.	kN	Lbs.	kN
		B22	2610	(11.61)	.014	(.35)	2610	(11.61)	2610	(11.61)
12	(305)	B22A	2610*	(11.61)	.002	(.05)	2610*	(11.61)	2610*	(11.61)
		B22X	5790*	(25.75)	.001	(.02)	5790*	(25.75)	5790*	(25.75)
		B22	2269	(10.09)	.031	(.79)	2269	(10.09)	2269	(10.09)
18	(457)	B22A	2610*	(11.61)	.007	(.18)	2610*	(11.61)	2610*	(11.61)
		B22X	5790*	(25.75)	.003	(.07)	5790*	(25.75)	5790*	(25.75)
0.4	(000)	B22	1702	(7.57)	.056	(1.42)	1702	(7.57)	1702	(7.57)
24	(609)	B22A	2610*	(11.61)	.017	(.43)	2610*	(11.61)	2610*	(11.61)
		B22X B22	5790* 1361	(25.75) (6.05)	.008	(.20) (2.21)	5790* 1361	(25.75) (6.05)	5790* 1294	(25.75) (5.75)
30	(762)	B22A	2610*	(11.61)	.033	(2.21)	2610*	(0.03)	2610*	(5.75)
00	(, 02)	B22X	5790*	(25.75)	.017	(.73)	5790*	(25.75)	5790*	(25.75)
		B22	1135	(5.05)	.126	(3.20)	1135	(5.05)	899	(4.00)
36	(914)	B22A	2610*	(11.61)	.057	(1.45)	2610*	(11.61)	2610*	(11.61)
		B22X	5790*	(25.75)	.029	(.73)	5790*	(25.75)	5790*	(25.75)
		B22	972	(4.32)	.172	(4.37)	972	(4.32)	660	(2.93)
42	(1067)	B22A	2610*	(11.61)	.091	(2.31)	2610*	(11.61)	2610*	(11.61)
		B22X	5790*	(25.75)	.046	(1.17)	5790*	(25.75)	5790*	(25.75)
40	(1210)	B22	851	(3.78)	.224	(5.69)	758	(3.37)	505	(2.24)
48	(1219)	B22A	2405	(10.70)	.125	(3.17)	2405	(10.70)	2405	(10.70)
		B22X B22	5790*	(25.75)	.068	(1.73)	5790*	(25.75)	5790*	(25.75)
54	(1371)	B22A	756 2138	(3.36) (9.51)	.284 .158	(7.21) (4.01)	599 2138	(2.66) (9.51)	399 2024	(1.77) (9.00)
54	(1071)	B22X	5790*	(25.75)	.097	(2.46)	5790*	(25.75)	5790*	(25.75)
		B22	681	(3.03)	.351	(8.91)	485	(2.16)	323	(1.44)
60	(1524)	B22A	1924	(8.56)	.195	(4.95)	1924	(8.56)	1640	(7.29)
		B22X	5645	(25.11)	.130	(3.30)	5645	(25.11)	5645	(25.11)
		B22	619	(2.75)	.424	(10.77)	401	(1.78)	267	(1.19)
66	(1676)	B22A	1749	(7.78)	.236	(5.99)	1749	(7.78)	1355	(6.03)
		B22X	5132	(22.83)	.158	(4.01)	5132	(22.83)	5132	(22.83)
70	(4.000)	B22	567	(2.52)	.505	(12.83)	337	(1.50)	225	(1.00)
72	(1829)	B22A	1603	(7.13)	.281	(7.14)	1603	(7.13)	1139	(5.06)
		B22X B22	4704 524	(20.92)	.188	(4.77)	4704 287	(20.92)	4704 191	(20.92)
78	(1981)	B22A	1480	(2.33) (6.58)	.330	(15.06) (8.38)	1455	(1.27) (6.47)	970	(0.85) (4.31)
70	(1001)	B22X	4342	(19.31)	.220	(5.59)	4342	(19.31)	4270	(18.99)
		B22	486	(2.16)	.687	(17.45)	248	(1.10)	165	(0.73)
84	(2133)	B22A	1374	(6.11)	.383	(9.73)	1255	(5.58)	837	(3.72)
		B22X	4032	(17.93)	.255	(6.48)	4032	(17.93)	3682	(16.38)
		B22	454	(2.02)	.789	(20.04)	216	(0.96)	144	(0.64)
90	(2286)	B22A	1283	(5.71)	.440	(11.17)	1093	(4.86)	729	(3.24)
		B22X	3763	(16.74)	.293	(7.44)	3763	(16.74)	3207	(14.26)
00	(2438)	B22	425	(1.89)	.898	(22.81)	190	(0.84)	126	(0.56)
96	(2430)	B22A B22X	1202 3528	(5.35)	.500 .334	(12.70) (8.48)	961 3528	(4.27)	640 2819	(2.85)
		B22A B22	400	(15.69) (1.78)	1.013	(25.73)	168	(15.69) (0.75)	112	(12.54) (0.50)
102	(2591)	B22A	1132	(5.03)	.565	(14.35)	851	(3.78)	567	(2.52)
	•	B22X	3320	(14.77)	.377	(9.57)	3320	(14.77)	2497	(11.11)
		B22	378	(1.68)	1.136	(28.85)	150	(0.67)	100	(0.44)
108	(2743)	B22A	1069	(4.75)	.633	(16.08)	759	(3.37)	506	(2.25)
		B22X	3136	(13.95)	.422	(10.72)	3136	(13.95)	2227	(9.90)
	(000=)	B22	358	(1.59)	1.266	(32.15)	134	(0.59)	90	(0.40)
114	(2895)	B22A	1013	(4.50)	.706	(17.93)	681	(3.03)	454	(2,02)
		B22X	2971	(13.21)	.471	(11.96)	2971	(13.21)	1999	(8,89)
120	(3048)	B22 B22A	340	(1.51)	1.403	(35.63)	121	(0.54)	81	(0.36)
120	(3040)	B22X	962 2822	(4.28) (12.55)	.782 .521	(19.86) (13.23)	615 2706	(2.73) (12.04)	410 1804	(1.82) (8.02)

Based on simple beam condition using an allowable design stress of 25,000 psi (172 MPa) in accordance with MFMA, with adequate lateral bracing (see page 12 for further explanation). Actual yield point of cold rolled steel is 42,000 psi. To determine concentrated load capacity at mid span, multiply uniform load by 0.5 and corresponding deflection by 0.8. *Failure determined by weld shear.

Column Loading

Linh	raced	Channel		Column L	oading l	ζ = .80 led@	М	ax. Colur	nn Loadi	ng (Load	led @ C.G	.)
	ight	Style		.G.		Face	K	= .65	K =	1.0	K = 1	1.2
ln.	mm		Lbs.	kN	Lbs.	kN	Lbs.	kN	Lbs.	kN	Lbs.	kN
12	(305)	B22 B22A B22X	10454 21625 46948	(46.50) (96.19) (208.83)	4276 7002 18975	(19.12) (31.14) (84.40)	10598 21677 47061	(47.14) (96.42) (209.34)	10222 21539 46761	(45.47) (95.81) (208.00)	9950 21433 46531	(44.26) (95.34) (206.98)
18	(457)	B22 B22A B22X	9950 21433 46531	(44.26) (95.34) (206.98)	4153 6959 18859	(18.47) (30.95) (83.90)	10253 21551 46787	(45.62) (95.86) (208.12)	9481 21239 46110	(42.17) (94.47) (205.11)	8955 21001 45593	(39.83) (93.42) (202.81)
24	(609)	B22 B22A B22X	9311 21164 45947	(41.42) (94.14) (204.38)	3993 6898 18693	(17.76) (30.68) (84.44)	9801 21373 46401	(43.60) (95.07) (206.40)	8582 20819 45198	(38.17) (92.61) (201.05)	7801 20397 44282	(3470) (9073) (196.97)
30	(762)	B22 B22A B22X	8582 20819 45198	(38.17) (92.61) (201.05)	3802 6821 18485	(16.91) (30.34) (82.22)	9268 21145 45906	(41.22) (94.06) (204.20)	7601 20279 44026	(33.81) (90.20) (195.84)	6595 19619 42593	(29.33) (87.27) (189.46)
36	(914)	B22 B22A B22X	7801 20397 44282	(34.70) (90.73) (196.97)	3589 6728 18233	(15.96) (29.93) (81.10)	8676 20866 45300	(38.59) (92.81) (201.50)	6595 19619 42593	(28.33) (87.27) (189.46)	5392 18669 40530	(23.98) (83.04) (180.28)
42	(1067)	B22 B22A B22X	6998 19898 43198	(31.13) (88.51) (192.15)	3360 6620 17940	(14.94) (29.45) (79.80)	8048 20537 44586	(35.80) (91.33) (198.33)	5595 18840 40901	(24.89) (83.80) (181.94)	4444 17546 38092	(19.77) (78.05) (169.44)
48	(1219)	B22 B22A B22X	6193 19322 41948	(27.55) (85.95) (186.59)	3118 6496 17604	(13.87) (28.89) (78.30)	7401 20157 43761	(32.92) (89.66) (194.57)	4718 17940 38948	(20.99) (79.80) (173.25)	3791 16251 35281	(16.86) (72.29) (156.94)
54	(1371)	B22 B22A B22X	5392 18669 40530	(23.98) (83.04) (180.28)	2864 6263 16973	(12.74) (27.86) (75.50)	6746 19276 42825	(30.01) (87.74) (190.49)	4090 16920 36733	(18.19) (75.26) (163.39)	3310 14782 32092	(14.72) (65.75) (142.75)
60	(1524)	B22 B22A B22X	4718 17940 38948	(20.99) (79.80) (173.25)	2631 5340 14471	(11.70) (23.75) (64.37)	6093 19244 41779	(27.10) (85.60) (185.84)	3616 15781 34260	(16.08) (70.20) (152.39)	2936 13141 28529	(13.06) (58.45) (126.90)
66	(1676)	B22 B22A B22X	4202 17134 37198	(18.69) (76.21) (165.46)	2434 4587 12431	(10.83) (20.40) (55.29)	5441 18712 40624	(24.20) (83.23) (180.70)	3242 14521 31525	(14.42) (64.59) (140.23)	2634 11328 24593	(11.71) (50.39) (109.39)
72	(1829)	B22 B22A B22X	3791 16251 35281	(16.86) (72.29) (156.94)	2264 3968 10753	(10.07) (17.65) (47.83)	4869 18129 39358	(21.66) (80.64) (175.07)	2936 13141 28529	(13.06) (58.45) (126.90)	2381 9524 20676	(10.59) (42.36) (91.97)
78	(1981)	B22 B22A B22X B22	3456 15291 33197 3176	(15.37) (68.02) (147.67) (14.13)	2116 3456 9366 1984	(9.41) (15.37) (41.66) (8.82)	4412 17496 37984 4037	(19.62) (77.82) (168.96) (17.96)	2680 11642 25275 2461	(11.92) (51.78) (112.43) (10.95)	2166 8115 17617 1980	(9.63) (36.10) (78.36) (8.81)
84	(2133)	B22A B22X B22	14255 30947 2936	(63.41) (137.66) (13.06)	3028 8206 1867	(13.47) (36.50) (8.30)	16812 36499 3724	(74.78) (162.35) (16.56)	10076 21875 2270	(44.82) (97.30) (10.10)	6998 15192 1816	(31.13) (67.58) (8.08)
90	(2286)	B22A B22X B22	13141 28529 2728	(58.45) (126.90) (16.58)	2667 7227 1761	(11.86) (32.15) (7.83)	16077 34903 3456	(71.51) (155.25) (15.37)	8778 19057 2101	(39.04) (84.77) (9.34)	6096 13234 1671	(27.11) (58.87) (7.43)
96	(2438)	B22A B22X	11951 25945	(53.16) (115.41)	2359 6393	(10.49) (28.44)	15291 33197	(68.02) (147.67)	7715 16749	(34.32) (74.50)	5357 11630	(23.83) (51.73)
102	(2591)	B22 B22A B22X	2545 10678 23182	(11.32) (47.50) (103.12)	1664 2093 5672	(7.40) (9.31) (25.23)	3225 14455 31382	(14.34) (64.30) (139.59)	1951 6834 14836	(8.68) (30.40) (65.99)	1542** 4746 10303	(6.34) (21.11) (45.83)
108	(2743)	B22 B22A B22X	2381 9524 20676	(10.59) (42.36) (91.97)	1575 1867 5059	(7.00) (8.30) (22.50)	3022 13568 29456	(13.44) (60.35) (131.03)	1816 6096 13234	(8.08) (27.11) (58.87)	1426** 4233 9190	(68.60) (18.83) (40.88)
114	(2895)	B22 B22A B22X	2234 8548 18558	(9.94) (38.02) (82.55)	1494 1675 4539	(6.64) (7.45) (20.19)	2842 12630 27420	(12.64) (56.18) (121.97)	1694 5471 11877	(7.53) (24.33) (52.83)	1322** 3799** 8247	(5.88) (16.90) (36.68)
120	(3048)	B22 B22A B22X	2101 7715 16749	(9.34) (34.32) (74.50)	1418 1512 4097	(6.31) (6.72) (18.22)	2680 11642 25275	(11.92) (51.78) (112.43)	1583* [*] 4937 10718	(7.04) (21.96) (47.67)	1228** 3429** 7444	(5.46) (15.25) (33.11)

^{**}Where the slenderness ratio $\frac{KL}{r}$ exceeds 200, and K = end fixity factor, L = actual length and r = radius of gyration.

Technical Data

Materials

Carbon Steel

Channels made from high-quality carbon steel are continuously roll formed to precise dimensions. By cold working the steel mechanical properties are increased, allowing lightweight structures to carry the required load. Corrosion resistance of carbon steel varies widely with coating and alloy. See "Finishes" for more detailed information.

Stainless Steel

Stainless steel channel is available in AISI Type 304 or 316 material. Both are non-magnetic and belong to the austenitic stainless steels group, based on alloy content and crystallographic structure. Like carbon steel, stainless steel exhibits increased strength when cold worked by roll-forming.

Several conditions make the use of stainless steel ideal. These include reducing long term maintenance costs, high ambient temperatures, appearance, and stable structural properties such as yield strength, and high creep strength.

Type 304 resists most organic chemicals, dyestuffs and a wide variety of inorganic chemicals at elevated or cryogenic temperatures. Type 316 contains slightly more nickel and adds molybdenum to give it better corrosion resistance in chloride and sulfuric acid environments. For more information concerning the differences between types 304 and 316, visit www.bline.com.

Aluminum

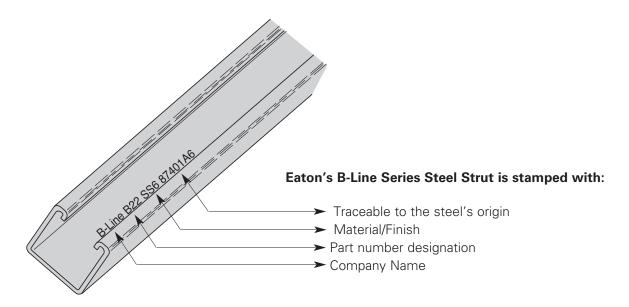
Standard aluminum channel is extruded from aluminum alloy 6063-T6. Strut fittings are made from aluminum alloy 5052-H32.

The high strength to weight ratio of channel made of aluminum helps greatly reduce the overall cost of installation through ease of handling and field cutting.

Aluminum owes its excellent corrosion resistance to its ability to form an aluminum oxide film that immediately reforms when scratched or cut. In most outdoor applications, aluminum has excellent resistance to "weathering". The resistance to chemicals, indoor or outdoor, can best be determined by tests conducted by the user with exposure to the specific conditions for which it is intended. The corrosion resistance of aluminum to some commonly known chemicals is shown in the Corrosion Chart on page 10. For further information, contact us or the Aluminum Association.

Fiberglass

We offer two fire retardant (FR) resins for strut systems, polyester and vinyl ester. Both resins are ideal for corrosive environments or nonconductive applications with moderate strength requirements. Some common types of environments where Vinyl Ester Resins are recommended, that Poly Esters are not, are paper mills, most any metal plating operation and any condition with

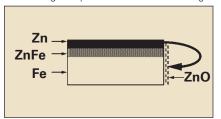

concentrated levels of Chlorine, [Cl⁻]. Please consult our fiberglass corrosion resistance charts on page 184 for specific chemical recommendation data.

Unlike other base materials depicted in this catalog, fiberglass exhibits unique physical property changes when operating in elevated temperature conditions that are a fraction of increase compared to steel or aluminum. Thus, it is advised against using fiberglass in temperatures greater than 200° F.

Please refer to the "Corrosion Resistance Guide" on page 184 for specific applications.

The fiberglass strut systems are manufactured from glass fiber-reinforced plastic shapes that meet ASTM E-84, Class 1 Flame Rating and self-extinguishing requirements of ASTM D-635. A surface veil is applied during pultrusion to insure a resin-rich surface and ultraviolet resistance.

While polyester is sufficient for most uses, vinyl ester is suitable for a broader range of environments.



Finishes

Zinc Coatings

Zinc protects steel in two ways. First it protects the steel as a coating, and second acts as a sacrificial anode to repair bare areas such as cut edges, scratches, and gouges. The corrosion protection of zinc is directly related to its thickness and the environment. This means a .2 mil coating will last twice as long as a .1 mil coating in the same environment.

Galvanizing also protects cut and drilled edges.

Electrogalvanized Zinc

Electrogalvanized Zinc (also known as zinc plated or electroplated) is the process by which a coating of zinc is deposited on the steel by electrolysis from a bath of zinc salts.

A rating of SC3, our standard, provides a minimum zinc coating thickness of .5 mils (excluding hardware, which is SC1 = .2

When exposed to air and moisture, zinc forms a tough, adherent, protective film consisting of a mixture of zinc oxides, hydroxides, and carbonates. This film is a barrier coating which helps slow subsequent corrosive attack on the zinc. This coating is usually recommended for indoor use in relatively dry areas, as it provides ninety-six hours protection in salt spray testing per ASTM B117.

Chromium / Zinc

Chromium / Zinc is a corrosion resistant composition, which was developed to protect fasteners and small bulk items for automotive use. The coating applications have since been extended to larger parts and other markets.

Chromium/Zinc composition is an aqueous coating dispersion containing chromium, proprietary organics, and zinc

This finish provides 720 hours protection in salt spray testing per ASTM B117.

Pre-Galvanized Zinc

(Mill galvanized, hot dip mill galvanized or continuous hot dip galvanized) Pregalvanized steel is produced by coating coils of sheet steel with zinc by continuously rolling the material through molten zinc at the mills. This is also known as mill galvanized or hot dip mill galvanized. These coils are then slit to size and fabricated by roll forming, shearing, punching, or forming to produce our pre-galvanized strut products.

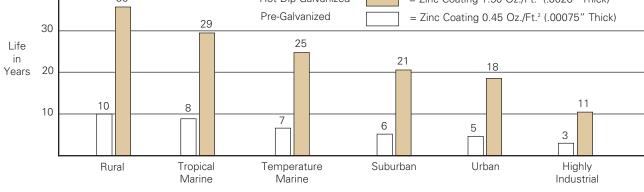
The G90 specification calls for a coating of .90 ounces of zinc per square foot of steel. This results in a coating of .45 ounces per square foot on each side of the sheet. This is important when comparing this finish to hot dip galvanized after fabrication.

During fabrication, cut edges and welded areas are not normally zinc coated; however, the zinc near the uncoated metal becomes a sacrificial anode to protect the bare areas after a short period of time.

Anticipated Life of Zinc Coatings In Various Atmospheric Environments

Hot Dip Galvanized After Fabrication (Hot dip galvanized or batch hot dip galvanized)

Hot dip galvanized strut products are fabricated from steel and then completely immersed in a bath of molten zinc. A metallic bond occurs resulting in a zinc coating that completely coats all surfaces, including edges and welds.


Another advantage of this method is coating thickness. Strut products that are hot dip galvanized after fabrication have a minimum thickness of 1.50 ounces per square foot on each side, or a total 3.0 ounces per square foot of steel, according to ASTM A123.

The zinc thickness is controlled by the amount of time each part is immersed in the molten zinc bath as well as the speed at which it is removed. The term "double dipping" refers to parts too large to fit into the galvanizing kettle and must be dipped one end at a time. It does not refer to extra coating thickness.

The layer of zinc which bonds to steel provides a dual protection against corrosion. It protects first as an overall barrier coating. If this coating happens to be scratched or gouged, zinc's secondary defense is called upon to protect the steel by galvanic action.

Hot-Dip Galvanized After Fabrication is recommended for prolonged outdoor exposure and will usually protect steel for 20 years or more in most atmospheric environments and in many industrial environments. For best results, a zinc rich paint (available from Eaton's B-Line Division) should be applied to field cuts. The zinc rich paint will provide immediate protection for these areas and eliminate the short time period for galvanic action to "heal" the damaged coating.

40 36 Hot Dip Galvanized = Zinc Coating 1.50 Oz./Ft.² (.0026" Thick) Pre-Galvanized 29 30

Environment

DURA GREEN[™] and DURA-COPPER[™] Epoxy Coatings

DURA GREEN and DURA-COPPER epoxy coatings are water borne epoxy coatings applied to B-Line series products by a precisely controlled cathodic electrodeposition process. This process is accomplished using a conveyor to transport channel and fittings through several cleaning, phosphatizing and application stages prior to being baked (See diagram below).

This custom-designed paint system is used for painting all channels, channel combinations, slotted angle, and fittings.

Samples are selected on a routine basis for salt spray (fog) testing to verify the quality of the finish. These tests are performed in accordance with ASTM B117 and evaluated and related according to ASTM D1654 (Tables 1 & 2).

The DURA GREEN and DURA-COPPER epoxy coatings have been tested and listed by Underwriters Laboratories in

accordance with "Standard for Surface Metal Raceway and Fittings, UL5" and "Standard for Pipe Hanger Equipment for Fire Protection Service, UL203".

Due to DURA GREEN's organically based composition, it seats itself into porous surfaces more completely and efficiently than zinc coatings. As these porous caverns are filled along the material profile, the outer finished surface demonstrates an increased smooth uniform plane which produces considerably less off-gasing when tested.

DURA GREEN channel meets or exceeds 100 level clean room standards. This was confirmed by testing the channel in accordance with Boeing (PCL) Standards, which are more stringent and complete than ASTM E595-93. DURA GREEN was found to be a superior finish, due in part to its proven application process.

Salt Spray Test Results


Type of Finish	Unscribed 5% Failure (1)	Scribed ¹ /8" (3.2) Creepage from Scribe (1)
DURA GREEN Epoxy	1000 Hours	312 Hours
Mill Galv. (Pre-Galv.) G90	192 Hours	288 Hours
Perma-Green	438 Hours	231 Hours
Zinc Chromate	36 Hours	96 Hours
Industry Green (Range)	10 to 36 Hours	4 to 30 Hours

(1) All salt spray (fog) tests conducted in accordance with ASTM B117 and evaluated and rated according to ASTM D1654 Tables 1 & 2. Tests are performed and certified by an independent testing laboratory.

DURA GREEN / DURA-COPPER Epoxy Coating Process

Tank 1 The channel and parts are thoroughly cleaned and phosphatized.	Tank 2 A rinse is applied to remove insoluble salts and unreacted phosphates.	Tank 3 A phosphatized sealer is applied to insure corrosion resistance and paint adhesion.	Tank 4 The material moves through clear water rinse to remove excess phosphates.	Tank 5 A pre-deionized rinse prepares the metal for the cathodic electrocoating.	Tank 6 The electro- coating tank applies a uniform coat of epoxy paint to the entire surface.	Tank 7 The first post rinse removes any unelectrically attracted solids.	Tank 8 The final rinse insures a smooth, nonblemish surface.	Bake Oven The curing process takes 20 minutes at a baking temperature of 375° F (199° C).

Metal Framing Channels

Channe

Metal framing channel is cold formed on our modern rolling mills from 12 Ga. (2.6mm), 14 Ga. (1.9mm), and 16 Ga. (1.5mm) low carbon steel strips. A continuous slot with inturned lips provides the ability to make attachments at any point.

Lengths & Tolerances

All channels excluding 'SH' style \pm ¹/8" (3.2mm) on 10' (3.05m) and \pm ³/16" (4.76mm) on 20' (6.09m) All 'SH' channels only \pm ¹/4" (6.35mm) on 10' (3.05m) and \pm ¹/2" (12.70mm) on 20' (6.09m) Custom lengths are available upon request.

Slots

Slotted series of channels offer full flexibility. A variety of pre-punched slot patterns eliminate the need for precise field measuring for hole locations. Slots offer wide adjustments in the alignment and bolt sizing.

Holes

A variety of pre-punched ⁹/16" (14.3 mm) diameter hole patterns are available in our channels. These hole patterns provide an economical alternative to costly field drilling required for many applications.

Knockouts

When used with series B217-20 Closure Strips, knockout channels can be used to provide an economical U.L. listed surface raceway. Channels are furnished with ⁷/8" (22.2 mm) knockouts on 6" (152 mm) centers, allowing for perfect fixture alignment on spans up to 20' (6.09 m).

Materials & Finishes (Unless otherwise noted) Steel: Plain & Pre-galvanized

12 Ga. (2.6), 14 Ga. (1.9) and 16 Ga. (1.5)

Note: A minimum order may apply on special material and finishes.

Design Load (Steel & Stainless Steel)

The design loads given for strut beam loads are based on a simple beam condition using an allowable stress of 25,000 psi. This allowable stress results in a safety factor

Finish Code	Finish	Specification
PLN	Plain	ASTM A1011, 33,000 PSI min. yield
GRN	DURA GREEN™	
GLV	Pre-Galvanized	ASTM A653 33,000 PSI min. yield
HDG	Hot-Dipped Galvanized	ASTM A123
YZN	Yellow Zinc Chromate	ASTM B633 SC3 Type II
SS4	Stainless Steel Type 304	ASTM A240
SS6	Stainless Steel Type 316	ASTM A240
AL	Aluminum	Aluminum 6063-T6

of 1.68. This is based upon virgin steel minimum yield strength of 33,000 psi cold worked during rolling to an average yield stress of 42,000 psi. For aluminum channel loading multiply steel loading by a factor of 0.38.

Welding

Weld spacing is maintained between 2¹/₂ inches (63.5 mm) and 4 inches (101.6 mm) on center. Through high quality control testing of welded channels and continuous monitoring of welding equipment, we provide the most consistent combination channels available today.

Metric

Metric dimensions are shown in parentheses. Unless noted, all metric dimensions are in millimeters.

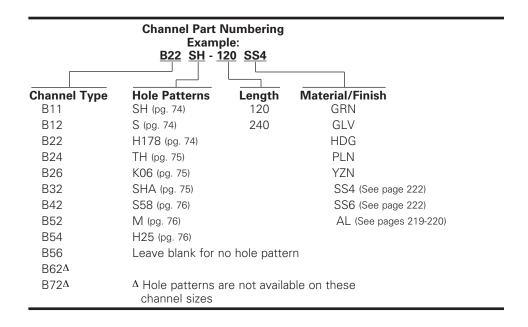
Selection Chart for Channels, Materials and Hole Patterns

		Cha Dimer	nnel Isions	Ma	terial &	Thicknown Stair	nless	SH	Channel S	Hole Pat	ttern **	KO6	
Channel Type	Hei	Height		Width		Alum.	Type 304	Type	9/16" x 1 ¹ /8" slots on 2" centers	¹³ / ₃₂ " x 3" slots	9/16" diameter holes	9/16" diameter on 1 ⁷ /8" centers	7/8" diameter knockouts
	 		L		1	2	<u>3</u>	4				Centers -	
B11	3 ¹ /4"	(82.5)	1 ⁵ /8"	(41.3)	12 Ga.	.105	_	_	1	<u>1</u>	1	_	<u>1</u>
B12	2 ⁷ /16"	(61.9)	1 ⁵ /8"	(41.3)	12 Ga.	.105	_	_	<u>1 2</u>	<u>1</u>	<u>1</u> <u>2</u>	_	<u>1</u> <u>2</u>
B22	1 ⁵ /8"	(41.3)	1 ⁵ /8"	(41.3)	12 Ga.	.105	12 Ga.	12 Ga.	1234	<u>1</u> <u>3</u>	1234	1	<u>1</u> <u>2</u>
B24	1 ⁵ /8"	(41.3)	1 ⁵ /8"	(41.3)	14 Ga.	.080	14 Ga.	14 Ga.	1234	<u>1</u>	1234	-	<u>1</u> <u>2</u>
B26	1 ⁵ /8"	(41.3)	1 ⁵ /8"	(41.3)	16 Ga.	_	_	_	1	<u>1</u>	<u>1</u>	_	<u>1</u>
B32	1 ³ /8"	(34.9)	1 ⁵ /8"	(41.3)	12 Ga.	_	12 Ga.	_	<u>13</u>	<u>1</u>	<u>13</u>	_	1
B42	1"	(25.4)	1 ⁵ /8"	(41.3)	12 Ga.	_	12 Ga.	_	<u>13</u>	<u>1</u>	<u>13</u>	_	1
B52	¹³ /16"	(20.6)	1 ⁵ /8"	(41.3)	12 Ga.	_	12 Ga.	12 Ga.	<u>134</u>	1	1	_	<u>1</u>
B54	¹³ /16"	(20.6)	1 ⁵ /8"	(41.3)	14 Ga.	.080	14 Ga.	14 Ga.	1234	<u>1</u>	1234	_	<u>1</u> <u>2</u>
B56	¹³ /16"	(20.6)	1 ⁵ /8"	(41.3)	16 Ga.	_	_	_	1	<u>1</u>	1	_	1
B62	13/16"	(20.6)	¹³ /16"	(20.6)	18 Ga.	_	_	_	_	_	_	_	_
B72	13/32"	(10.3)	¹³ /16"	(20.6)	18 Ga.	_	_	_	_	_	_	_	_

The selection has been prepared to provide a reference for available channel, materials and hole patterns. Material types available for various hole patterns are defined by numbers 1 thru 4. Some stainless steel channels with hole patterns are available on special order only.

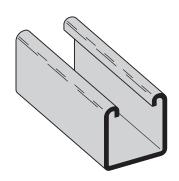
*Metric equivalent for thicknesses shown in chart.

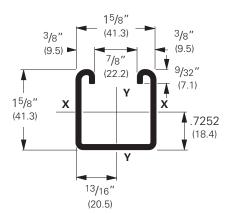
nesses shown in chart. ** $\frac{1}{2}$ - Steel 18 Ga. = 1.2 mm $\frac{2}{2}$ - Aluminum


12 Ga. = 2.6 mm 14 Ga. = 1.9 mm 105 = 2.6 mm

16 Ga. = 1.5 mm

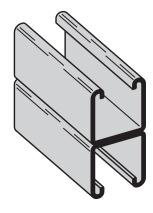
3 - Type 304 Stainless Steel 4 - Type 316 Stainless Steel

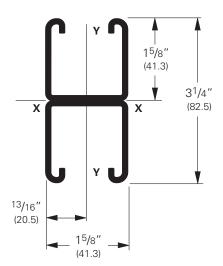

Properties may vary due to commercial tolerances of the material.


.080 = 2.0 mm

B22

- Thickness: 12 Gauge (2.6 mm)
- Standard lengths: 10' (3.05 m) & 20' (6.09 m)
- Standard finishes: Plain, DURA GREEN™, Pre-Galvanized, Hot-Dipped Galvanized, Stainless Steel Type 304 or 316, Aluminum
- Weight: 1.90 Lbs./Ft. (2.83 kg/m)




Note: Aluminum loading, for B22 & B22A, can be determined by multiplying load data times a factor of 0.38

Section	Propert	ties			X - X Axis					is Y - Y Axis							
Channel	el Weight S		Area Sec		Momentof Section Inertia (I) Modulus (S)			Radius of Gyration (r)		Moment of Inertia (I)		Section Modulus (S)		Radius of Gyration (
	lbs./ft.	kg/m	sq. in.	cm ²	in. ⁴	cm ⁴	in. ³	cm ³	in.	cm	in. ⁴	cm ⁴	in. ³	cm ³	in.	cm	
B22	1.910	(2.84)	.562	(3.62)	.1912	(7.96)	.2125	(3.48)	.583	(1.48)	.2399	(9.99)	.2953	(4.84)	.653	(1.66)	
B22A	3.820	(5.69)	1.124	(7.25)	.9732	(40.51)	.5989	(9.81)	.931	(2.36)	.4798	(19.97)	.5905	(9.68)	.653	(1.66)	
B22X	6.649	(9.89)	1.956 (12.62)	4.1484	(172.67)	1.7019	(27.89)	1.456	(3.70)	1.1023	3 (45.88)	1.2027	(19.71)	.751	(1.91)	

Calculations of section properties are based on metal thicknesses as determined by the AISI Cold-Formed Steel Design Manual.

B22AWt. 3.80 Lbs./Ft. (5.65 kg/m)

B22 Beam Loading Data

Beam Loading

Ream	Span	Channel	Unifor	m I nad a	nd Deflec	tion	Uniform Load @ Deflection = 1/240 Span 1/360 Span				
In.	mm	Style	Lbs.	kN	In.	mm	Lbs.	kN	Lbs.	kN	
		B22	2610	(11.61)	.014	(.35)	2610	(11.61)	2610	(11.61)	
12	(305)	B22A	2610*	(11.61)	.002	(.05)	2610*	(11.61)	2610*	(11.61)	
		B22X	5790*	(25.75)	.001	(.02)	5790*	(25.75)	5790*	(25.75)	
		B22	2269	(10.09)	.031	(.79)	2269	(10.09)	2269	(10.09)	
18	(457)	B22A	2610*	(11.61)	.007	(.18)	2610*	(11.61)	2610*	(11.61)	
		B22X	5790*	(25.75)	.003	(.07)	5790*	(25.75)	5790*	(25.75)	
0.4	(000)	B22	1702	(7.57)	.056	(1.42)	1702	(7.57)	1702	(7.57)	
24	(609)	B22A	2610*	(11.61)	.017	(.43)	2610*	(11.61)	2610*	(11.61)	
		B22X B22	5790* 1361	(25.75) (6.05)	.008	(.20) (2.21)	5790* 1361	(25.75) (6.05)	5790* 1294	(25.75) (5.75)	
30	(762)	B22A	2610*	(0.03)	.033	(2.21)	2610*	(0.03)	2610*	(5.75)	
00	(, 02)	B22X	5790*	(25.75)	.017	(.73)	5790*	(25.75)	5790*	(25.75)	
		B22	1135	(5.05)	.126	(3.20)	1135	(5.05)	899	(4.00)	
36	(914)	B22A	2610*	(11.61)	.057	(1.45)	2610*	(11.61)	2610*	(11.61)	
		B22X	5790*	(25.75)	.029	(.73)	5790*	(25.75)	5790*	(25.75)	
		B22	972	(4.32)	.172	(4.37)	972	(4.32)	660	(2.93)	
42	(1067)	B22A	2610*	(11.61)	.091	(2.31)	2610*	(11.61)	2610*	(11.61)	
		B22X	5790*	(25.75)	.046	(1.17)	5790*	(25.75)	5790*	(25.75)	
40	(1210)	B22	851	(3.78)	.224	(5.69)	758	(3.37)	505	(2.24)	
48	(1219)	B22A	2405	(10.70)	.125	(3.17)	2405	(10.70)	2405	(10.70)	
		B22X B22	5790*	(25.75)	.068	(1.73)	5790*	(25.75)	5790*	(25.75)	
54	(1371)	B22A	756 2138	(3.36) (9.51)	.284 .158	(7.21) (4.01)	599 2138	(2.66) (9.51)	399 2024	(1.77) (9.00)	
54	(1071)	B22X	5790*	(25.75)	.097	(2.46)	5790*	(25.75)	5790*	(25.75)	
		B22	681	(3.03)	.351	(8.91)	485	(2.16)	323	(1.44)	
60	(1524)	B22A	1924	(8.56)	.195	(4.95)	1924	(8.56)	1640	(7.29)	
		B22X	5645	(25.11)	.130	(3.30)	5645	(25.11)	5645	(25.11)	
		B22	619	(2.75)	.424	(10.77)	401	(1.78)	267	(1.19)	
66	(1676)	B22A	1749	(7.78)	.236	(5.99)	1749	(7.78)	1355	(6.03)	
		B22X	5132	(22.83)	.158	(4.01)	5132	(22.83)	5132	(22.83)	
70	(4.000)	B22	567	(2.52)	.505	(12.83)	337	(1.50)	225	(1.00)	
72	(1829)	B22A	1603	(7.13)	.281	(7.14)	1603	(7.13)	1139	(5.06)	
		B22X B22	4704 524	(20.92)	.188	(4.77)	4704 287	(20.92)	4704 191	(20.92)	
78	(1981)	B22A	1480	(2.33) (6.58)	.330	(15.06) (8.38)	1455	(1.27) (6.47)	970	(0.85) (4.31)	
70	(1001)	B22X	4342	(19.31)	.220	(5.59)	4342	(19.31)	4270	(18.99)	
		B22	486	(2.16)	.687	(17.45)	248	(1.10)	165	(0.73)	
84	(2133)	B22A	1374	(6.11)	.383	(9.73)	1255	(5.58)	837	(3.72)	
		B22X	4032	(17.93)	.255	(6.48)	4032	(17.93)	3682	(16.38)	
		B22	454	(2.02)	.789	(20.04)	216	(0.96)	144	(0.64)	
90	(2286)	B22A	1283	(5.71)	.440	(11.17)	1093	(4.86)	729	(3.24)	
		B22X	3763	(16.74)	.293	(7.44)	3763	(16.74)	3207	(14.26)	
00	(2438)	B22	425	(1.89)	.898	(22.81)	190	(0.84)	126	(0.56)	
96	(2430)	B22A B22X	1202 3528	(5.35)	.500 .334	(12.70) (8.48)	961 3528	(4.27)	640 2819	(2.85)	
		B22A B22	400	(15.69) (1.78)	1.013	(25.73)	168	(15.69) (0.75)	112	(12.54) (0.50)	
102	(2591)	B22A	1132	(5.03)	.565	(14.35)	851	(3.78)	567	(2.52)	
	•	B22X	3320	(14.77)	.377	(9.57)	3320	(14.77)	2497	(11.11)	
		B22	378	(1.68)	1.136	(28.85)	150	(0.67)	100	(0.44)	
108	(2743)	B22A	1069	(4.75)	.633	(16.08)	759	(3.37)	506	(2.25)	
		B22X	3136	(13.95)	.422	(10.72)	3136	(13.95)	2227	(9.90)	
	(000=)	B22	358	(1.59)	1.266	(32.15)	134	(0.59)	90	(0.40)	
114	(2895)	B22A	1013	(4.50)	.706	(17.93)	681	(3.03)	454	(2,02)	
		B22X	2971	(13.21)	.471	(11.96)	2971	(13.21)	1999	(8,89)	
120	(3048)	B22 B22A	340	(1.51)	1.403	(35.63)	121	(0.54)	81	(0.36)	
120	(3040)	B22X	962 2822	(4.28) (12.55)	.782 .521	(19.86) (13.23)	615 2706	(2.73) (12.04)	410 1804	(1.82) (8.02)	

Based on simple beam condition using an allowable design stress of 25,000 psi (172 MPa) in accordance with MFMA, with adequate lateral bracing (see page 12 for further explanation). Actual yield point of cold rolled steel is 42,000 psi. To determine concentrated load capacity at mid span, multiply uniform load by 0.5 and corresponding deflection by 0.8. *Failure determined by weld shear.

Column Loading

Linh	raced	Channel	Max. Column Loading K = .80 Loaded@ Loaded@				Max. Column Loading (Loaded @ C.G.)						
Unbraced Height		Style	C.G.		Slot Face		K = .65		K = 1.0		K = 1.2		
ln.	mm		Lbs.	kN	Lbs.	kN	Lbs.	kN	Lbs.	kN	Lbs.	kN	
12	(305)	B22 B22A B22X	10454 21625 46948	(46.50) (96.19) (208.83)	4276 7002 18975	(19.12) (31.14) (84.40)	10598 21677 47061	(47.14) (96.42) (209.34)	10222 21539 46761	(45.47) (95.81) (208.00)	9950 21433 46531	(44.26) (95.34) (206.98)	
18	(457)	B22 B22A B22X	9950 21433 46531	(44.26) (95.34) (206.98)	4153 6959 18859	(18.47) (30.95) (83.90)	10253 21551 46787	(45.62) (95.86) (208.12)	9481 21239 46110	(42.17) (94.47) (205.11)	8955 21001 45593	(39.83) (93.42) (202.81)	
24	(609)	B22 B22A B22X	9311 21164 45947	(41.42) (94.14) (204.38)	3993 6898 18693	(17.76) (30.68) (84.44)	9801 21373 46401	(43.60) (95.07) (206.40)	8582 20819 45198	(38.17) (92.61) (201.05)	7801 20397 44282	(3470) (9073) (196.97)	
30	(762)	B22 B22A B22X	8582 20819 45198	(38.17) (92.61) (201.05)	3802 6821 18485	(16.91) (30.34) (82.22)	9268 21145 45906	(41.22) (94.06) (204.20)	7601 20279 44026	(33.81) (90.20) (195.84)	6595 19619 42593	(29.33) (87.27) (189.46)	
36	(914)	B22 B22A B22X	7801 20397 44282	(34.70) (90.73) (196.97)	3589 6728 18233	(15.96) (29.93) (81.10)	8676 20866 45300	(38.59) (92.81) (201.50)	6595 19619 42593	(28.33) (87.27) (189.46)	5392 18669 40530	(23.98) (83.04) (180.28)	
42	(1067)	B22 B22A B22X	6998 19898 43198	(31.13) (88.51) (192.15)	3360 6620 17940	(14.94) (29.45) (79.80)	8048 20537 44586	(35.80) (91.33) (198.33)	5595 18840 40901	(24.89) (83.80) (181.94)	4444 17546 38092	(19.77) (78.05) (169.44)	
48	(1219)	B22 B22A B22X	6193 19322 41948	(27.55) (85.95) (186.59)	3118 6496 17604	(13.87) (28.89) (78.30)	7401 20157 43761	(32.92) (89.66) (194.57)	4718 17940 38948	(20.99) (79.80) (173.25)	3791 16251 35281	(16.86) (72.29) (156.94)	
54	(1371)	B22 B22A B22X	5392 18669 40530	(23.98) (83.04) (180.28)	2864 6263 16973	(12.74) (27.86) (75.50)	6746 19276 42825	(30.01) (87.74) (190.49)	4090 16920 36733	(18.19) (75.26) (163.39)	3310 14782 32092	(14.72) (65.75) (142.75)	
60	(1524)	B22 B22A B22X	4718 17940 38948	(20.99) (79.80) (173.25)	2631 5340 14471	(11.70) (23.75) (64.37)	6093 19244 41779	(27.10) (85.60) (185.84)	3616 15781 34260	(16.08) (70.20) (152.39)	2936 13141 28529	(13.06) (58.45) (126.90)	
66	(1676)	B22 B22A B22X	4202 17134 37198	(18.69) (76.21) (165.46)	2434 4587 12431	(10.83) (20.40) (55.29)	5441 18712 40624	(24.20) (83.23) (180.70)	3242 14521 31525	(14.42) (64.59) (140.23)	2634 11328 24593	(11.71) (50.39) (109.39)	
72	(1829)	B22 B22A B22X	3791 16251 35281	(16.86) (72.29) (156.94)	2264 3968 10753	(10.07) (17.65) (47.83)	4869 18129 39358	(21.66) (80.64) (175.07)	2936 13141 28529	(13.06) (58.45) (126.90)	2381 9524 20676	(10.59) (42.36) (91.97)	
78	(1981)	B22 B22A B22X B22	3456 15291 33197 3176	(15.37) (68.02) (147.67) (14.13)	2116 3456 9366 1984	(9.41) (15.37) (41.66) (8.82)	4412 17496 37984 4037	(19.62) (77.82) (168.96) (17.96)	2680 11642 25275 2461	(11.92) (51.78) (112.43) (10.95)	2166 8115 17617 1980	(9.63) (36.10) (78.36) (8.81)	
84	(2133)	B22A B22X B22	14255 30947 2936	(63.41) (137.66) (13.06)	3028 8206 1867	(13.47) (36.50) (8.30)	16812 36499 3724	(74.78) (162.35) (16.56)	10076 21875 2270	(44.82) (97.30) (10.10)	6998 15192 1816	(31.13) (67.58) (8.08)	
90	(2286)	B22A B22X B22	13141 28529 2728	(58.45) (126.90) (16.58)	2667 7227 1761	(11.86) (32.15) (7.83)	16077 34903 3456	(71.51) (155.25) (15.37)	8778 19057 2101	(39.04) (84.77) (9.34)	6096 13234 1671	(27.11) (58.87) (7.43)	
96	(2438)	B22A B22X	11951 25945	(53.16) (115.41)	2359 6393	(10.49) (28.44)	15291 33197	(68.02) (147.67)	7715 16749	(34.32) (74.50)	5357 11630	(23.83) (51.73)	
102	(2591)	B22 B22A B22X	2545 10678 23182	(11.32) (47.50) (103.12)	1664 2093 5672	(7.40) (9.31) (25.23)	3225 14455 31382	(14.34) (64.30) (139.59)	1951 6834 14836	(8.68) (30.40) (65.99)	1542** 4746 10303	(6.34) (21.11) (45.83)	
108	(2743)	B22 B22A B22X	2381 9524 20676	(10.59) (42.36) (91.97)	1575 1867 5059	(7.00) (8.30) (22.50)	3022 13568 29456	(13.44) (60.35) (131.03)	1816 6096 13234	(8.08) (27.11) (58.87)	1426** 4233 9190	(68.60) (18.83) (40.88)	
114	(2895)	B22 B22A B22X	2234 8548 18558	(9.94) (38.02) (82.55)	1494 1675 4539	(6.64) (7.45) (20.19)	2842 12630 27420	(12.64) (56.18) (121.97)	1694 5471 11877	(7.53) (24.33) (52.83)	1322** 3799** 8247	(5.88) (16.90) (36.68)	
120	(3048)	B22 B22A B22X	2101 7715 16749	(9.34) (34.32) (74.50)	1418 1512 4097	(6.31) (6.72) (18.22)	2680 11642 25275	(11.92) (51.78) (112.43)	1583* [*] 4937 10718	(7.04) (21.96) (47.67)	1228** 3429** 7444	(5.46) (15.25) (33.11)	

^{**}Where the slenderness ratio $\frac{KL}{r}$ exceeds 200, and K = end fixity factor, L = actual length and r = radius of gyration.