ELC-AN06AANN
Analog to Digital/Digital to Analog Converter Mixed Module

\triangle WARNING

- This Instruction Sheet only provides descriptions for electrical specifications, genera specifications, installation \& wiring, troubleshooting and peripherals. For more information about the optional peripherals, please see ELC Application Manual
- This is an OPEN TYPE Controller. The ELC should be kept in an enclosure away from airborne dust, humidity, electric shock risk and vibration. Also, it is equipped with protective methods such as some special tools or keys to open the enclosure, so as to avoid the hazard to users and the damage to the ELC. DO NOT touch terminals when power on.
- Never connect the AC main circuit power supply to any of the input/output terminals, as it will damage the ELC. Check all the wiring prior to power up. To avoid any electromagnetic noise make sure the ELC is properly grounded \oplus.
Warning - Do not disconnect while circuit is live unless area is known to be non-hazardous
- Power, input and output (//O) wiring must be in accordance with Class 1, Div. 2 wiring methods Article 501-10(B)(1) of the National Electrical Code
- Suitable for use in Class 1, Division 2, Groups A, B, C, D or Non-Hazardous locations only
- Warning - Explosion hazard - Substitution of components may impair suitability for Class 1 , Division 2.
Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is known to be Non-Hazardous.

1 INTRODUCTION

1 Model Explanation and Peripherals

Thank you for choosing Eaton Logic Controller (ELC) series products. The ELC-AN06AANN allows he connection of four analog inputs and 2 groups 12 bits digital outputs (voltage/current). The ELC ransforms the input into a 12 bit digital signal and the output into a 2 points analog signal, which may hen be manipulated using TO and FROM commands in the ladder logic program. There are 49 Controlled Registers (CR) in each module (each register is 16 bits). The Analog Input/Output Mixed Module of ELC-ANO6AANN can read/write the data of analog input module by using commands ROM / TO via ELC program.
1.2 Product Profile and Outline

Note 1: Please isolate analog input and Note 2 : If input connected current signal, please short circuit between $\mathrm{V}+$ and $\mathrm{I}+$ terminals.
Note 3 : If wave of input terminal of loaded is too big that noise interferes wiring, please connect capacitance with $0.1 \sim 0.47 \mu \mathrm{~F} 25 \mathrm{~V}$
Note 4: Please isolate analog output and other power wiring.
Note 5 : If wave of output terminal of loaded is too big that noise interferes wiring, please connect capacitance with
$0.1 \sim 0.47 \mu \mathrm{~F} 25 \mathrm{~V}$
Note 6: Please connect $\xlongequal{-}$ terminal of power module and $\xlongequal{\ni}$ terminal of analog output module to system earth point and make system earth point be grounding or connects to machine cove Warning: DO NOT wire to the No function $60 / 75^{\circ} \mathrm{C}$

2.1 Specifications

FOUR CH. (ADD) CONVERTER	VOLTAGE INPUT	CUR
Power Supply Voltage	$24 \mathrm{VDC}(20.4 \mathrm{VDC} \sim 28.8 \mathrm{VDC})(-15 \% \sim+20 \%)$	
Analog Input Channel	4 channels per module	
Analog Output Range		
Digital Data Range	$\pm 2,000$	$\pm 1,000$
Resolution	12 bits(1.ss=5 mV)	11 bits (1 sse $=20 \mu \mathrm{~A}$)
Input Impedance	$200 \mathrm{~K} \Omega$ and above	250Ω
Overal Accuracy	$\pm 0.5 \%$ of full scale of $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	
-	$\pm 1 \%$ of full scale during 0 $\sim 55^{\circ} \mathrm{C}\left(32 \sim 131{ }^{\circ} \mathrm{F}\right.$)	
Response Time	$3 \mathrm{~ms} \times$ channels	
Isolation Method	There is no Isolation between digital and analog circuitry.	
Isolatio	Field to Digital Area: 500 V Field to Analog Area: 500V Analog area to Digital Area: 500 V Field to $24 \mathrm{VDC}: 500 \mathrm{~V}$	
Absolution Input Range	$\pm 15 \mathrm{~V}$	$\pm 32 \mathrm{~mA}$
Digital Data Format	2's complement of 16 -bit, (11 Significant Bits)	
Average Function	Yes (CR\#2~CR\#5 can be set and the range is K1~K100)	
Self Diagnostic Function Self Detection	Upper bound and lower bound detection per channel	
TWO CH. D/A CONVERTER	VOLTAGE OUTPUT	CURRENT OUTPU
Analog Signal Output Channels	2 channel per module	
Analog Output Range	$0 \sim 10 \mathrm{~V}$	$0 \sim 20 \mathrm{~mA}$
Digital Data Range	0~4,000	0~4,000
Resolution	12 bits (11.s8=2.5 mV)	12 bits (1.ss=5 $\mu \mathrm{A})$
Output Impedance	$0.5 \Omega \text { or lower }$	
Overall Accuracy	$\pm 0.5 \%$ of ful scale at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$$\pm 1 \%$ of ful scale during $0-55^{\circ} \mathrm{C}\left(32 \sim 1311^{\circ} \mathrm{F}\right)$	
Response Time	$3 \mathrm{~ms} \times$ Channels	
Max. Output Current	$10 \mathrm{~mA}(1 \mathrm{~K} \Omega \sim 2 \mathrm{M} \Omega)$	
Tolerance Carried Impedance	${ }^{\text {2 }}$'s complement of 16 -bit, (11 Significant Bits)	
Digital Data Format		
Isolation Method	There is no Isolation between digitita and analog circuitry.	
Isolation	Field to Digital Area: 500V Field to Analog Area: 500V Analog area to Digital Area: 500 V Field to $24 \mathrm{VDC}: 500 \mathrm{~V}$	
Protection	Voltage output has short circuit protection but short circuit for a long time may cause inner wiring damage and open circuit protection.	
Communication Mode (RS-485)	MODBUS ASCII/RTU Mode. Communication baud rate of $4,800 / 9,600$ / 19,200 / 38,400 / 57,600 / 115,200 bps. For ASCII mode, date format is 7 Bits , even, 1 stop bit (7 E 1). For RTU mode, date format is 8 Bits , even, 1 stop bit (8 E 1). The RS-485 is disabled when the ELC-AN06AANN is connected in series to an ELC.	
Connect to ELC MPU in Series	When ELC-ANO6AANN modules are connected to an ELC, the modules are numbered from $0-7.0$ is the closest to the MPU and 7 is the furthest. The Maximum number of modules is 8 modules and they	

TWO CH. D/A CONVERTER	VOLtage output	CURRENT OUTPUT
	do not occupy any digital I/O points of the MPU.	
2.2 Other Specifications		
Maximum Power Consumption	$24 \mathrm{VDC}(20.4 \mathrm{VDC}-28.8 \mathrm{VDC})(-15 \% \sim+20 \%$	
Noise Immunity	ESD(IEC 61131-2, IEC 61000-4-2): 8KV Air Discharge EFT(IEC 61131-2, IEC 61000-4-4): Power Line: 2KV, Digital //O: 1 KV , Analog \& Communication I/O: 1 KV RS(IEC $61131-2$, IEC $61000-4-3$): $26 \mathrm{MHz} \sim 1 \mathrm{GHz}, 10 \mathrm{~V} / \mathrm{m}$	
Grounding	The diameter of the grounding wire cannot be smaller than that of terminals 24 V and OV (if numerous ELCs are used at the same time, make sure that each ELC is grounded respectively to the ground poles)	
Vibration/Shock Immunity	International Standard Regulations: IEC61131-2, IEC 68-2-6 (TEST FC) IEC61131-2 \& IEC 68-2-27 (TEST Ea)	
Operation/Storage Environment	Operation: $0{ }^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$ (temperature), $50 \sim 95 \%$ (humidity), pollution degree: 2; Storage: $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ (temperature), $5 \sim 95 \%$ (humidity)	
Agency Approvals	UL508 UL1604, Class1,Div2 Operating temperature code: T5 European community EMC Directive 89/336/EEC and Low Voltage Directive 73/23/EEC	

3

ELC-AN06AANN					
$\begin{aligned} & \text { CR } \\ & \mathrm{No} \end{aligned}$	Parameter Comm.			Reg	
\#0	H 40C8	-	R	Model type	

\#1	H 40C9	-	Rw	Mode seting
\#2	H 40CA	\bigcirc	RN	
\#3	н 4оСв	-	Rw	${ }_{\text {num }}^{\text {CH2 }}$
\#4	400	-	RM	${ }_{\text {CH3 ave }}^{\text {Cumber }}$
\#5	H 40CD	\bigcirc	RN	$\mathrm{CH}^{\mathrm{CH} 4 \text { avera }}$
*6	H 40 CE	\times	R	Averas
\#7	H 40CF	\times	R	Averae va
\#8	H4000	\times	R	${ }_{\text {Alerage }}^{\text {Average }}$
\#9	H4001	\times	R	${ }^{\text {Averaa }} \mathrm{CH4in}$
\#10	H4002	\times	RN	ciocme
\#11	H4003	\times	RN	CH6 output
\#12	H400	\times	R	${ }_{\text {Present }}^{\substack{\text { Present } \\ \text { CH1 } \\ \text { inuil }}}$
\#13	H4005	\times	R	Pres
\#14	H4006	\times	R	
\#15	H4007	\times	R	Present value of
\#16-\#17				
\#18	H40	-	Rw	To ad.
\#19	H 400B	-	RW	To adj OFFSEE
\#20	H 400C	-	Rw	To adi. OFFSEE
\#21	H400D	-	Rw	To adi. OFFSE
\#22	H 400E	-	RW	To adj. OfFSEE
\#23	H 400F	-	RW	To adj. OfFSEE
\#24	H 40E0	-	RM	${ }^{\text {To adij }}$ T 6

CR(CONTROLL REGISTER)

 | CH6 | CH5 | CH4 | CH3 | CH2 | CH1 |
| :--- | :--- | :--- | :--- | :--- | :--- | Input mode setting: (CH1~CH4)

Mode 0: input volage mode ($-10 \mathrm{~V} \sim+10 \mathrm{~V}$). Factory Setting is Hoooo
Mode 1: input voltage mode ($-(6 \mathrm{~V}-10 \mathrm{VV}$).
Mode 2: input current mode $(-12 \mathrm{~mA}+20 \mathrm{OAA})$
Mode 3 : input current mode $(-20 \mathrm{~mA} A+2 \mathrm{~mA})$
Mode 4: Reserved
-ufl
Mode 0 : output voltage mode ($0 \mathrm{~V}-10 \mathrm{~V}$).
Mode 1 : output volage
Mode 2 : ouptut current mode ($4 \mathrm{mAA}-20 \mathrm{~mA}$.
Mode 3 : utput turrent mode ((mA-20mA)
(1) factory setting is K10.

Ouput value of CH5-CH
K0 and the unit is LSB.

Senvaue of CH1-CH4 input signal

Offset setting of CH1~CH4. Factory setting is K0 and unitis LSB.
Votage input setting range is $\mathrm{k-1,000-k1,000}$

Offset setting of CH5-CH6. Factory setting is K0 and unitis LSB.
Offset setting of CH5-CH6. Factory s
The seting ange is $\mathrm{K}-2,000-\mathrm{K}, 2000$
GAIN setting of CH1-CH4. Factory setting is $\mathrm{K} 1,000$ and unitit s LSB.

ELC-AN06AANN					EXPLANATION														
\#25	H 40E1	-	Rw	To adj GA value of 0	Voltage input: setting range is K-800 $\sim K 4,000$														
\#26	H 40E2	-	RW																
\#27	¢0E3	-	RW	To adi. GAAN															
\#28	H 40E4	o	RW		GAIN setting of CH5 5 CH 6 . Factory setting is $\mathrm{K} 2,000$ and unit is LSB.														
\#29	H 40E5		RW	- To adi. GAIN															
\#30	H40E6	\times	R	Eror staus	Data register stores the error status, refer to faut code chat for details.														
\#31	H40E7	-	RW	Communication address setting	RS-485 communication address. Setting range is K1~K255 and factory setting is K1														
\#32	H 40E8	-	RW	Communication baud rate setting	Communication baud rate ($4,800,9,600,19,200,38,400,57,600$ and 115,200 bps) For ASCII mode, date format is 7 Bits, even, 1 stop bit ($7, \mathrm{E}, 1$). For RTU mode, date format is 8 Bits, even, 1 stop bit ($8, \mathrm{E}, 1$). b0: 4,800 bps (bitsec), b1: 9,600 bps (bit/sec). (factory setting) b2: $19,200 \mathrm{bps}$ (bit/sec), b3: $38,400 \mathrm{bps}$ (bit/sec). b4: 57,600 bps (bitsec), b5: 115,200 bps (bit/sec). b6-b13: Reserved, b14: switch between low bit and high bit of CRC code (only for RTU mode), b15: RTU mode.														
		-	RW	Reset to factory setting and set adjustable priority	${ }^{015} 0^{014}$	${ }^{\text {b13 }}{ }^{\text {b12 }}$	b11 bio $^{\text {b }}$ b9	b7	${ }^{\text {b5 }}$ b4	bo									
						CH5	CH4	СН3	CH2										
\#33	H40E9				Example: Setting of CH 1 1. When $\mathrm{b} 0=0$, user can set OFFSET and GAIN value of CH 1 (CR\#18, CR\#24). When $\mathrm{b} 0=1$, inhibit user to adjust OFFSET and GAIN value of CH 1 . 2. b1 means if characteristic register is latched. b1 $=0$ (factory setting, latched), b1=1 (not latched). 3. b2: Set to 1 and ELC-AN06AANN will be reset to factory settings. The setting of $\mathrm{CH} 5 \sim \mathrm{CH} 6$, give CH 5 setting for example: b13, b12: 00: can be adjusted, latched, 01: can be adjusted, non-latched. 10: inhibit adjust, 11: reset to factory settings and clear b12, b13 to 0.														
\#34	H 40EA	-	R	System Version	Display software version in hexadecimal. Example: H010A = version 1.0 A .														

Explanation

. CR\#0: The ELC model type
2. CR\#1: b11~b0 is used to set 4 inner channels working mode of analog input module (AD) b12~b15 is used to set 2 channels working mode of analog output module (DA). Every channel as four modes to set and can be set individually. For example: if setting CH1 to mod 111 60=011) f ode 1 (b15~b14=01) it needs to setb12~b15 to H5. The factory setting is H0000.
3. CR\#2 $\sim \mathrm{CR} \# 5$: Used to set the number of input readings used for the average temperature calculation. The available range is $\mathrm{K} 1 \sim \mathrm{~K} 100$ and factory setting is K 10 .
4. $\mathrm{CR} \# 6$ to $\mathrm{CR} \# 9$: they are used to save the average value of input signal of $\mathrm{CH} 1 \sim \mathrm{CH} 4$.
5. $\mathrm{CR} \# 10 \sim \mathrm{CR} \mathrm{\# 11}$ are used to set the output value of CH 5 and CH 6 . The setting range is K0 $-K 4,000$. The factory setting is $K 0$ and unit is LSB
CR\#12 $\sim \mathrm{CR} \# 15$: they are used to save the present value of input signal of $\mathrm{CH} 1 \sim \mathrm{CH} 4$.
7. CR\#16, CR\#17, CR\#28, CR\#29 are reserved
. CR \#18~ CR \#21: the content is the value of adjusting OFFSET value of CH1~CH4 if analog input voltage or current is 0 after it transfers from analog to digital. Voltage setting range: $-5 \mathrm{~V} \sim+5 \mathrm{~V}\left(-1,000_{\mathrm{Lss}} \sim 1,000_{\mathrm{Lss}}\right)$. Current setting range: $-20 \mathrm{~mA} \sim+20 \mathrm{~mA}\left(-1,000_{\mathrm{Lss}} \sim+1,000_{\mathrm{Lss}}\right)$.
9. CR \#22~ CR \#23: the content is the value of adjusting OFFSET value of $\mathrm{CH} 5 \sim \mathrm{CH} 6$ if analog input voltage or current is 0 after it transfers from analog to digital. The factory setting is KO and he unit is LSB. The setting range is $-2,000 \sim+2,000$. Voltage setting range:
$-5 \mathrm{~V} \sim+5 \mathrm{~V}\left(-2,000_{\mathrm{LsB}} \sim+2,000_{\mathrm{LsB}}\right)$. Current setting range: $-10 \mathrm{~mA} \sim+10 \mathrm{~mA}\left(-2,000_{\mathrm{LsB}} \sim+2,000_{\mathrm{LsB}}\right)$.
$0 . \mathrm{CR} \# 24 \sim$ CR \#27: That is the value of adjust GAIN value of CH1~CH4. That is the value o analog input voltage or current when conversion value from analog signal to digital is 4,000 . oltage setting range: $-4 \mathrm{~V} \sim+20 \mathrm{~V}\left(-80 \mathrm{~L}_{\mathrm{LsB}} \sim+4,00 \mathrm{~L}_{\mathrm{LsB}}\right)$. Current setting range: $-16 \mathrm{~mA} \sim+52 \mathrm{~mA}$ $-800_{\text {LsB }} \sim+2,600_{\text {Lss }}$). But it needs to notice that GAIN VALUE - OFFSET VALUE $=$ $200_{\text {LSB }} \sim+3,000_{\text {LSB }}$ (voltage) or $+200_{\text {LSB }} \sim 1,600$ LSB (current). When this value under this range value exceeds this range, the resolution of input signal will be thick and the variation of value

will be smalier.

11. CR \#28~ CR \#29: That is the value of adjust GAIN value of CH5~CH6. That is the value of analog input voltage or current when conversion value from analog signal to digital is 2,000 . Voltage setting range: $-4 \mathrm{~V} \sim+20 \mathrm{~V}\left(-1,600_{\mathrm{LsB}} \sim+8,000_{\mathrm{LsB}}\right)$. Current setting range: $-8 \mathrm{~mA} \sim+40 \mathrm{~mA}$ $\left(-1,6000_{\text {LsB }} \sim+8,000_{\text {LsB }}\right)$. But it needs to notice that GAIN VALUE - OFFSET VALUE $=+400_{\text {LsB }}$ $\sim+6,000 \mathrm{LsB}$ (voltage/current). When this value under this range, the resolution of the input signal will be thin and the variation of value will be larger. When this value exceeds this range, the resolution of input signal will be thick and the variation of value will be smaller.

Faut description	Content	b15-b8	b7	b6	b5	b4	b3	b2	b1	bo
Power source abnormal (Low voltage alarm)	K1(H1)	Reserved	0	0	0	0	0	0	0	1
User setting D/A output exceeds range	K2(H2)		0	0	0	0	0	0	1	0
Setting mode error	K4(H4)		0	0	0	0	0	1	0	0
Offsel/Gain error	K8(H8)		0	0	0	0	1	0	0	0
Hardware malfunction	K16(H10)		0	0	0	1	0	0	0	0
Digital range error	K32(H20)		0	0	1	0	0	0	0	0
Average times setting error	K64(H40)		0	1	0	0	0	0	0	0
Command error	K128(H80)		1	0	0	0	0	0	0	0

13. CR\#31: RS-485 communication address. Setting range is $01 \sim 255$ and factory setting is K 1 . 14. CR\#32: RS-485 communication baud rate: 4,800, 9,600, 19,200, 38,400, 57,600 and 115,200 b0:4,800bps, b1:9,600bps (factory setting), b2:19,200bps, b3:38,400 bps, b4:57,600 bps, b5:115,200 bps, b6~b13: Reserved, b14: switch between low bit and high bit of CRC code (only for RTU mode) b15: ASCII / RTU mode. For ASCII mode, date format is 7Bits, even, 1 stop bit $(7, E, 1)$. For RTU mode, date format is 8 Bits, even, 1 stop bit ($8, \mathrm{E}, 1$).
14. CR\#33 is used to set the inner function priority. For example: characteristic register. Output latched function will save output setting in the inner memory before loss power.
15. The corresponding parameters address $\mathrm{H} 40 \mathrm{C} 8 \sim \mathrm{H} 40 \mathrm{EA}$ of $\mathrm{CR} \# 0 \sim \mathrm{CR} \# 34$ can provide user to read/write data by RS-485.
a) Communication baud rate: $4,800,9,600,19,200,38,400,57,600,115,200$ bps
b) Communication format: ASCII mode is 7 Bit , even bit, 1 stop bit $(7, \mathrm{E}, 1)$. Communication format of RTU mode is 8 Bit, even bit, 1 stop bit ($8, \mathrm{E}, 1$).
c) Function code: 03 H -read data from register. 06 H -write a WORD into register. 10 H -write many WORDs into register.

4 ADJUST AID CONVERSION CHARACTERISTIC CURVE
4.1 Adjust A/D Conversion Characteristic Curve of CH1-CH4 Voltage input mode

Voltage input mode		
digitalautut	Mode 0 of CR\#1:	GAIN=5V(1,000 ${ }_{\text {Lss }}$) OFFSET $=0 \mathrm{~V}\left(0_{\text {Lss }}\right)$.
Mode $/$	Mode 1 of CR\#1:	GAIN=6V $\left(1,200_{\text {Lss }}\right)$, OFFSET $=2 \mathrm{~V}\left(400_{\text {Lss }}\right.$).
	GAIN:	Voltage input value when digital output is 1,000 .
22 5u bv		Setting range is $-4 \mathrm{~V} \sim+20 \mathrm{~V}\left(-80 \mathrm{~L}_{\text {LSB }} \sim+4,000 \mathrm{~L}_{\text {Ls }}\right)$
,otserean	OFFSET	Voltage input value when digital output is 0 .
		Setting range: $-5 \mathrm{~V} \sim+5 \mathrm{~V}\left(-1,000_{\text {Ls }} \sim+1,000_{\text {Lss }}\right)$
	GAIN-OFFSET:	Setting range is $+1 \mathrm{~V} \sim+15 \mathrm{~V}\left(+200_{\text {Lse }} \sim+3,00 \mathrm{Lss}^{\text {L }}\right.$)
Current input mode:		
Digital outut	Mode 2 of CR\#1:	GAIN $=20 \mathrm{~mA}\left(1,000{ }_{\text {Lss }}\right.$), OFFSET $=4 \mathrm{~mA}\left(200_{\text {LSS }}\right)$.
	Mode 3 of CR\#1:	GAIN $=20 \mathrm{~mA}\left(1,000 L_{\text {Ls }}\right)$, OFFSET $=0 \mathrm{~mA}\left(0_{\text {LSB }}\right)$.
20 mA -12mA	GAIN:	Current input value when digital output is $+1,00$
		Seting range is $-16 \mathrm{~mA} \sim 52 \mathrm{~mA}(-800$ Ls8
		$+2,600_{\text {Ls8 }}$
	OFF	Current input value when digital output value is 0 .
		Setting range is $-20 \mathrm{~mA} \sim+20 \mathrm{~mA}(-1,000$ LsB
		+1,000 Lse $^{\text {) }}$

The chart above is to adjust A/D conversion characteristic curve of voltage input mode and current input mode. Users can adjust conversion characteristic curve by changing OFFSET values (CR\#18~CR\#21) and GAIN values (CR\#24~CR\#27) depend on application.

Voltage input: $1_{\text {LSB }}=10 \mathrm{~V} / 2,000=5 \mathrm{mV}$. Current input $1_{\text {LSB }}=20 \mathrm{~mA} / 1,000=20 \mu \mathrm{~A}$.
4.2 Adjust D/A Conversion Characteristic Curve of CH5-CH6

Voltage output mode

Current output mode

Mode 0 of CR\#1: \quad GAIN $=5 V\left(2,000_{\text {LSB }}\right)$, OFFSET $=0 V\left(0_{\text {LSB }}\right)$ Mode 1 of CR\#1: $\quad \operatorname{GAIN}=6 \mathrm{~V}\left(2,400_{\text {Ls }}\right)$, OFFSET $=2 \mathrm{~V}\left(80 \mathrm{~L}_{\text {LB }}\right)$. GAIN: Voltage output value when digital input is $\mathrm{K}, 2000$ Setting range is $-4 \mathrm{~V} \sim+20 \mathrm{~V}(-1,600, \sim+8,000$ Voltage output value when digital input is $K 0$. Setting range: $-5 \mathrm{~V} \sim+5 \mathrm{~V}\left(-2,000{ }_{\text {LSB }} \sim+2,000\right.$ Lse $)$
GAIN - OFFSET: Setting range is $+1 \mathrm{~V} \sim+15 \mathrm{~V}(+400 \mathrm{LsB} \sim+6,000$ Ls8)
Mode 2 of CR\#1: \quad GAIN $=12 \mathrm{~mA}\left(2,400_{\text {LSB }}\right)$,OFFSET $=4 \mathrm{~mA}\left(800_{\text {LSB }}\right)$. Mode 3 of CR\#1: \quad GAIN $=10 \mathrm{~mA}\left(2_{2}, 000_{\text {LSS }}\right)$, OFFSET $=0 \mathrm{~mA}\left(0_{\text {LS }}\right)$. Current output value when digital input value is $\mathrm{K} 2,000$. Setting range is $-8 \mathrm{~mA} \sim+40 \mathrm{~mA}\left(-1,600_{\text {LsB }}\right.$
$\sim 8,000$
sse ${ }^{+8,000} \mathrm{Lss}{\text {ss }}$.
OFFSET: Current output value when in k. Setting range is $-10 \mathrm{~mA} \sim+10 \mathrm{~mA}\left(-2,000_{\text {LsB }} \sim+2,000_{\text {Lss }}\right)$.
GAIN-OFFSET: Setting range is $+2 \mathrm{~mA} \sim+30 \mathrm{~mA}\left(+400_{\text {LSB }} \sim+6,000_{\text {LSB }}\right)$

The chart above is to adjust D / A conversion characteristic curve of voltage output mode and current output mode. Users can adjust conversion characteristic curve by changing OFFSET values (CR\#14~CR\#15) and GAIN values (CR\#18~CR\#19) depend on application.

Voltage output: $1_{\text {LSB }}=10 \mathrm{~V} / 4,000=2.5 \mathrm{mV}$., Current output: $1_{\text {LSB }}=20 \mathrm{~mA} / 4,000=5 \mu \mathrm{~A}$.

5. Installation of the DIN rail

1. Installation of the DIN rail

The ELC can be secured to a cabinet by using the DIN rail that is 35 mm high with a depth of 7.5 mm . When mounting the ELC on the DIN rail, be sure to use the end bracket to stop any side-to-side motion of the ELC, thus to reduce the chance of the wires being pulled loose. At the bottom of the ELC is a small retaining clip. To secure the ELC to the DIN rail, place it onto the rail and gently pus up the clip.
To remove it, pull down the retaining clip and gently pull the ELC away from the DIN rail. As shown on the right:
When installing the ELC, make sure that it is installed in an enclosure with sufficient space (as shown on the right) to its surroundings so as to allow heat dissipation.

2. Wiring

Notes:

1. Please use 22-16AWG (1.5 mm) wiring (either single or multiple core) for I / O wiring terminals. The specification for the terminals is as shown on the left. ELC terminal screws should be tightened to $.95 \mathrm{~kg}-\mathrm{cm}(1.7 \mathrm{lb}-\mathrm{in})$. Use Copper Conductor Only, $60 / 75^{\circ} \mathrm{C}$.
2. I/O signal wires or power supply should not run through the same multi-wire cable or conduit.

6

INITIAL ELC START-UP
display:

1. Upon power-up, the ERROR LED will light for 0.5 seconds the POWER LED will light continuously.
2. No errors= POWER LED on and ERROR LED of Low Voltage error (lower than 19.5V), ERROR LED will blink continuously till the powe supply rises above 19.5 V .
3. ELC-ANO6AANN connected to ELC in series = RUN LED on MPU will be lit and A/D

LED or D/A LED should blink.

4. After receiving the first RS-485 command the A/D LED or D/A LED will blink.
. If the input or output exceeds the upper or lower bounds, then the ERROR LED will
blink.
When main ELC and extension unit communicate time-out or abnormal interrupt, LED ERROR of extension unit will keep lighting.
