Thermal overload relays
T7DU, TA25DU, TA42DU, TA75DU, TA80DU, TA110DU, TA200DU, TA450DU Class 10

Normal starting time class 10:

For contactors	Setting range A		Catalog number	List price
Mini contactors B7-BC7	0.1	... 0.16	T7DU0.16	
	0.16	... 0.24	T7DU0.24	
	0.24	... 0.4	T7DU0.4	
	0.4	... 0.6	T7DU0.6	
	0.6	... 1	T7DU01.0	
	1	... 1.6	T7DU1.6	
	1.6	... 2.4	T7DU2.4	
	2.4	... 4	T7DU4.0	
	4	... 6	T7DU6.0	
	6	... 9	T7DU9.0	
	9	... 12	T7DU12.0	
A/AL/TAL9... 40	0.1	... 0.16	TA25DU0.16	
	0.16	... 0.25	TA25DU0.25	
	0.25	... 0.4	TA25DU0.4	
	0.4	... 0.63	TA25DU0.63	
	0.63	... 1	TA25DU1.0	
	1	... 1.4	TA25DU1.4	
	1.3	... 1.8	TA25DU1.8	
	1.7	... 2.4	TA25DU2.4	
	2.2	... 3.1	TA25DU3.1	
	2.8	... 4	TA25DU4.0	
	3.5	... 5	TA25DU5.0	
	4.5	... 6.5	TA25DU6.5	
	6	... 8.5	TA25DU8.5	
	7.5	... 11	TA25DU11	
	10	... 14	TA25DU14	
	13	... 19	TA25DU19	
	18	... 25	TA25DU25	
	24	... $32^{(1)}$	TA25DU32	
A/AL/TAL30... 40	18	... 25	TA42DU25	
	22	... 32	TA42DU32	
	29	... 42	TA42DU42	
AF50... 75	18	... 25	TA75DU25	
	22	... 32	TA75DU32	
	29	... 42	TA75DU42	
	36	... 52	TA75DU52	
	45	... 63	TA75DU63	
	60	... 80	TA75DU80	
A/AF95... 110	29	... 42	TA80DU42	
	36	... 52	TA80DU52	
	45	... 63	TA80DU63	
	60	... 80	TA80DU80	
A/AF95... 110	66	... 90	TA110DU90	
	80	... 110	TA110DU110	
A/AF145-A/AF185	66	... 90	TA200DU90	
	80	... 110	TA200DU110	
	100	... 135	TA200DU135	
	110	... 150	TA200DU150	
	130	... 175	TA200DU175	
	150	... 200	TA200DU200	
A/AF210-A/AF300	130	... 185	TA450DU185	
	165	... 235	TA450DU235	
	220	... 310	TA450DU310	

(1) With terminal block DX25: $1 \times 16 \mathrm{~mm}^{2}$

Thermal overload relays T... Description

- Switching frequency

Thermal overload relays T cannot be operated at any arbitrary switching frequency in order to avid tripping. Applications involving up to 15 operations per hour are acceptable. Higher switching frequencies are permitted if the duty ratio and the motor starting time are allowed for and if the motor's making current does not appreciably exceed 6 times the rated operating current. Please refer to the adjacent diagram for guideline values for the permitted switching frequency.
Example: Starting time of the motor: 1 second

$$
\begin{aligned}
& \text { Duty ratio: } 40 \% \\
& \text { means a permitted switching frequency of max. } 60 \text { operations per hour }
\end{aligned}
$$

Use of the CUSTORAPID ${ }^{\circledR}$ motor protection is recommended for higher switching frequencies and alternating loading, e.g. for frequent starting and braking. Use of a combination of thermal overload relays and CUSTORAPID ${ }^{\circledR}$ is recommended in the case of locked rotors on motors with thermally critical rotors.

- Protection with heavy starting

Relays TA450SU can be used for particularly severe starting conditions. The setting ranges specified on Pages 41 and 42 apply to non-recurrent looping through of the cables. The relay may also be used for lower motor rated currents. This is achieved by looping the cables through several times. The setting range specified on the rating plate is inversely proportional to the number of cables looped through. For instance: TA450DU/SU with a setting range of $130 \ldots 185 \mathrm{~A}$ is also suitable for currents of 65 ... 92.5 A if the cables are looped through twice; the figures are 43.3 ... 61.6 A for looping the cables through three times.

- Special version for EEx e motors

Relays T7DU, TA25DU ... TA450DU/SU are suitable for protection of EEx e motors. They have been tested and approved by the "German National Standards Laboratory" (PTB) in Braunschweig, Germany.

When selecting the overload relay, check suitability on the basis of the tripping curves. The values for the ratio of pick-up current $\mathbf{I}_{\mathbf{a}}$ to rated current $\mathbf{I}_{\mathbf{n}}$ and the shortest $\mathbf{t}_{\mathbf{E}}$ time are crucial, and these must be specified on the PTB Approval Certificate and on the motor's rating plate. The relay must trip within the t_{E} time, i.e. the tripping curve, starting from cold state, must run below the coordinate point $\mathbf{I}_{\mathbf{a}} / \mathbf{I}_{\mathbf{n}}$ and the tE time.

- Example for suitability of an overload relay T/TA:

The motor with increased safety has the following data:
Output $=7.5 \mathrm{~kW}$, $\mathrm{I} / \mathrm{In}=7.4 \mathrm{tE}$ time $=11$ seconds.
In accordance with the adjacent tripping curve, the tripping time lies below the tE time of the motor. The special relay version for EEx e motors differs from the normal version as follows:

- Special test of the tripping times at the works
- Special order code

Tripping curves for the individual setting ranges and the PTB Approvals Certificates may be ordered.

Limit values for tripping at ambient temperatures other than $20^{\circ} \mathrm{C}$

- Ambient temperature compensation:

The overload relays are protected against influences of ambient temperature by a bimetallic compensation element which detects the ambient temperature.
This design means that tripping occurs between $-5^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ within the ranges defined by IEC 947-4-1. See the adjacent curve for the extended range of $-25^{\circ} \mathrm{C}$ resp. $+55^{\circ} \mathrm{C}$.

- Example :

Tripping at $-25^{\circ} \mathrm{C}$. Tripping occurs at ≤ 1.5 times the setting current.

- Reset :

Types E16DU, T7DU, TA25DU ... TA450DU/SU feature a convertible Manual/ Automatic reset.

* Condition as delivered :

Manual reset.

Thermal overload relays T...

Technical data

General technical data									
Type			T7DU		TA25DU		TA42DU	TA75DU	
Standards: (major international European and national standards)			IEC 947-4-1, VDE 0660, NFC 63 650, BS 4941, EN 60947-4-1CSA22.2 No. 14, UL508						
Approvals, certificates			see page 5/15						
Rated insulation voltage Uito IEC 158-1, IEC 947-4-1 to IEC 158-1, IEC 947-4-1			690		660/690				
Impulse withstand voltage Uimpto IEC 947-4-1			6		6				
- Storage temperature ${ }^{\circ} \mathbf{C}$ - for operation (compensated) ${ }^{\circ} \mathbf{C}$			$\begin{aligned} & -40 \text { to }+70 \\ & -25 \text { to }+55 \end{aligned}$						
Climatic resistance to DIN 50017			Resistant to changeable climate KFW, 30 cycles						
Mounting position			any, but please avoid vertical mounting position wherever possible						
			1010		1512				
Resistance to vibration: ($\pm 1 \mathrm{~mm}, 50 \mathrm{~Hz}$) multiple of g			4		8				
Mounting - onto contactor - with AB.. mounting kit			hooking beneath the contactor, screwing on its main terminals by screws: $2 \times \mathrm{M} 4$ or $\boldsymbol{Z} 35 \mathrm{~mm}$ EN 50022						
Connection terminals and attachment type Main conductors (motor side) - Screw terminals - Screw terminal - with terminal block - with busbars or cable lugs			$\begin{gathered} \text { M3. } 5 \\ - \\ \hline \end{gathered}$		TA25DU set 0.1...0.16 A to $18 . . .25 \mathrm{~A}$ M4 -	ting ranges: A24... 32 A M5	$\begin{gathered} \text { M6 } \\ - \\ - \end{gathered}$		
- Connection cross-sections - single-core or stranded AWG - flexible with wire end ferrule AWG - busbars AWG			$\begin{gathered} 2 \times 18 \ldots 14 \\ 2 \times 18 \ldots 14 \\ - \end{gathered}$		$\begin{array}{\|c\|c\|c\|} \hline 2 \times 16 \ldots 10 & 2 \times 16 \ldots 10 \\ 2 \times 16 \ldots 10 & 2 \times 16 \ldots 10 \\ - & - \\ \hline \end{array}$		$\begin{aligned} & 1 \times 14 \ldots 4 \text { or } 2 \times 14 \ldots 6 \\ & 1 \times 14 \ldots 4 \text { or } 2 \times 14 \ldots 8 \end{aligned}$		
Connections and auxiliary connectors - Screw terminal (screw size) - with self-disengaging clamping piece			M 3.5						
- Connection cross-section - single-core or stranded - flexible with wire end ferr		AWG AWG	$\begin{aligned} & 2 \times 18 . . \\ & 2 \times 18 . \end{aligned}$		$\begin{aligned} & 2 \times 18 \ldots 14 \\ & 2 \times 18 \ldots 1 \end{aligned}$				
Enclosure to IEC 144, IEC 529			All terminals are safe from finger-touch and safe from touch by the back of the hand to VDE 0106, Part 100 (no extra terminal shrouds are required up to and including TA110DU)						
Technical data of the conducting paths									
Type	T7DU	TA25DU	TA42DU	TA75DU	TA80DU	TA110DU	TA200DU	TA450DU	TA450SU
Number of paths			$3 \times$						
Setting ranges			see ordering details						
Tripping class to IEC 947-4-1 / VDE 0660, Part 1021			10-20			10			30
Frequency range $\quad \mathrm{Hz}$			$0 \ldots 400$					50/60	
Switching frequency without early tripping			up to 15 ops ./h or $60 \mathrm{ops} . / \mathrm{h}$ with 40% if the breaking current does not exceed 6 x In and the starting time does not exceed 1 s						

Thermal overload relays T...
 Technical data

Load rating of auxiliary contacts

Type		T7DU		TA25DU ...TA450DU/SU	
Auxiliary switch		$\begin{gathered} \text { NC } \\ 95-96 \end{gathered}$	$\begin{gathered} \text { NO } \\ 97-98 \end{gathered}$	$\begin{gathered} \text { NC } \\ 95-96 \end{gathered}$	$\begin{gathered} \mathrm{NO} \\ 97-98 \end{gathered}$
Rated operating voltage $\mathrm{U}_{\text {e }}$	V	500	500	500	
Rated thermal current $\mathrm{I}_{\text {th }}$	A	6	6	10	6
Rated operating current le at AC 15 to 240 V	A	1.5	1.5	3	1.5
at AC 15 to 440 V	A	0.7	0.5	1.9	0.95
at AC 15 to 500 V	A	0.5	0.3	1	0.75
at DC 13 to 24 V	A	-	-	1.25	0.42
to 60 V	A	-	-	0.50	0.17
to 120 V	A	-	-	0.25	0.08
to 250 V	A	0.2	0.02	0.12	0.04
Maximum potential difference	AC V	500		500	
between the NO and NC contacts	DC V	440		440	
Short-circuit protection	gL/gG A	4	4	10	6
STOTZ circuit-breaker type:					
S271	A	K1	K1	K3	K1
S281	A	K1	K1	K3	K1

Function of the thermal overload relays

Position of the connection terminals
TA25DU, TA42DU,
TA75DU, TA80DU

Press blue button	Contacts	Relay tripped		Relay not tripped	
		Manual	Automatic	Manual	Automatic
	$\begin{aligned} & \text { NC 95-96 } \\ & \text { NO 97-98 } \end{aligned}$	open closed	open closed	closed open	closed open
Button R	NC 95-96 NO 97-98	Reset	-	-	-
		closes when Button's pressed	-	-	-
		opens when Button's pressed	-	-	-
Button R/O	NC 95-96 NO 97-98	Reset	-	-	-
		closes when Button's released	-	opens when Button's pressed closes when Button's released	opens when Button's pressed closes when Button's released
		opens when Button's pressed	-	-	-

TA450DU/SU

Thermal overload relays
T7DU, TA25DU, TA42DU, TA75DU, TA80DU, TA110DU, TA200DU, TA450DU Class 10

Normal starting time class 10:

For contactors	Setting range A		Catalog number	List price
Mini contactors B7-BC7	0.1	... 0.16	T7DU0.16	
	0.16	... 0.24	T7DU0.24	
	0.24	... 0.4	T7DU0.4	
	0.4	... 0.6	T7DU0.6	
	0.6	... 1	T7DU01.0	
	1	... 1.6	T7DU1.6	
	1.6	... 2.4	T7DU2.4	
	2.4	... 4	T7DU4.0	
	4	... 6	T7DU6.0	
	6	... 9	T7DU9.0	
	9	... 12	T7DU12.0	
A/AL/TAL9... 40	0.1	... 0.16	TA25DU0.16	
	0.16	... 0.25	TA25DU0.25	
	0.25	... 0.4	TA25DU0.4	
	0.4	... 0.63	TA25DU0.63	
	0.63	... 1	TA25DU1.0	
	1	... 1.4	TA25DU1.4	
	1.3	... 1.8	TA25DU1.8	
	1.7	... 2.4	TA25DU2.4	
	2.2	... 3.1	TA25DU3.1	
	2.8	... 4	TA25DU4.0	
	3.5	... 5	TA25DU5.0	
	4.5	... 6.5	TA25DU6.5	
	6	... 8.5	TA25DU8.5	
	7.5	... 11	TA25DU11	
	10	... 14	TA25DU14	
	13	... 19	TA25DU19	
	18	... 25	TA25DU25	
	24	... $32^{(1)}$	TA25DU32	
A/AL/TAL30... 40	18	... 25	TA42DU25	
	22	... 32	TA42DU32	
	29	... 42	TA42DU42	
AF50... 75	18	... 25	TA75DU25	
	22	... 32	TA75DU32	
	29	... 42	TA75DU42	
	36	... 52	TA75DU52	
	45	... 63	TA75DU63	
	60	... 80	TA75DU80	
A/AF95... 110	29	... 42	TA80DU42	
	36	... 52	TA80DU52	
	45	... 63	TA80DU63	
	60	... 80	TA80DU80	
A/AF95... 110	66	... 90	TA110DU90	
	80	... 110	TA110DU110	
A/AF145-A/AF185	66	... 90	TA200DU90	
	80	... 110	TA200DU110	
	100	... 135	TA200DU135	
	110	... 150	TA200DU150	
	130	... 175	TA200DU175	
	150	... 200	TA200DU200	
A/AF210-A/AF300	130	... 185	TA450DU185	
	165	... 235	TA450DU235	
	220	... 310	TA450DU310	

(1) With terminal block DX25: $1 \times 16 \mathrm{~mm}^{2}$

Thermal overload relays T... Description

- Switching frequency

Thermal overload relays T cannot be operated at any arbitrary switching frequency in order to avid tripping. Applications involving up to 15 operations per hour are acceptable. Higher switching frequencies are permitted if the duty ratio and the motor starting time are allowed for and if the motor's making current does not appreciably exceed 6 times the rated operating current. Please refer to the adjacent diagram for guideline values for the permitted switching frequency.
Example: Starting time of the motor: 1 second

$$
\begin{aligned}
& \text { Duty ratio: } 40 \% \\
& \text { means a permitted switching frequency of max. } 60 \text { operations per hour }
\end{aligned}
$$

Use of the CUSTORAPID ${ }^{\circledR}$ motor protection is recommended for higher switching frequencies and alternating loading, e.g. for frequent starting and braking. Use of a combination of thermal overload relays and CUSTORAPID ${ }^{\circledR}$ is recommended in the case of locked rotors on motors with thermally critical rotors.

- Protection with heavy starting

Relays TA450SU can be used for particularly severe starting conditions. The setting ranges specified on Pages 41 and 42 apply to non-recurrent looping through of the cables. The relay may also be used for lower motor rated currents. This is achieved by looping the cables through several times. The setting range specified on the rating plate is inversely proportional to the number of cables looped through. For instance: TA450DU/SU with a setting range of $130 \ldots 185 \mathrm{~A}$ is also suitable for currents of 65 ... 92.5 A if the cables are looped through twice; the figures are 43.3 ... 61.6 A for looping the cables through three times.

- Special version for EEx e motors

Relays T7DU, TA25DU ... TA450DU/SU are suitable for protection of EEx e motors. They have been tested and approved by the "German National Standards Laboratory" (PTB) in Braunschweig, Germany.

When selecting the overload relay, check suitability on the basis of the tripping curves. The values for the ratio of pick-up current $\mathbf{I}_{\mathbf{a}}$ to rated current $\mathbf{I}_{\mathbf{n}}$ and the shortest $\mathbf{t}_{\mathbf{E}}$ time are crucial, and these must be specified on the PTB Approval Certificate and on the motor's rating plate. The relay must trip within the t_{E} time, i.e. the tripping curve, starting from cold state, must run below the coordinate point $\mathbf{I}_{\mathbf{a}} / \mathbf{I}_{\mathbf{n}}$ and the tE time.

- Example for suitability of an overload relay T/TA:

The motor with increased safety has the following data:
Output $=7.5 \mathrm{~kW}$, $\mathrm{I} / \mathrm{In}=7.4 \mathrm{tE}$ time $=11$ seconds.
In accordance with the adjacent tripping curve, the tripping time lies below the tE time of the motor. The special relay version for EEx e motors differs from the normal version as follows:

- Special test of the tripping times at the works
- Special order code

Tripping curves for the individual setting ranges and the PTB Approvals Certificates may be ordered.

Limit values for tripping at ambient temperatures other than $20^{\circ} \mathrm{C}$

- Ambient temperature compensation:

The overload relays are protected against influences of ambient temperature by a bimetallic compensation element which detects the ambient temperature.
This design means that tripping occurs between $-5^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ within the ranges defined by IEC 947-4-1. See the adjacent curve for the extended range of $-25^{\circ} \mathrm{C}$ resp. $+55^{\circ} \mathrm{C}$.

- Example :

Tripping at $-25^{\circ} \mathrm{C}$. Tripping occurs at ≤ 1.5 times the setting current.

- Reset :

Types E16DU, T7DU, TA25DU ... TA450DU/SU feature a convertible Manual/ Automatic reset.

* Condition as delivered :

Manual reset.

Thermal overload relays T...

Technical data

General technical data									
Type			T7DU		TA25DU		TA42DU	TA75DU	
Standards: (major international European and national standards)			IEC 947-4-1, VDE 0660, NFC 63 650, BS 4941, EN 60947-4-1CSA22.2 No. 14, UL508						
Approvals, certificates			see page 5/15						
Rated insulation voltage Uito IEC 158-1, IEC 947-4-1 to IEC 158-1, IEC 947-4-1			690		660/690				
Impulse withstand voltage Uimpto IEC 947-4-1			6		6				
- Storage temperature ${ }^{\circ} \mathbf{C}$ - for operation (compensated) ${ }^{\circ} \mathbf{C}$			$\begin{aligned} & -40 \text { to }+70 \\ & -25 \text { to }+55 \end{aligned}$						
Climatic resistance to DIN 50017			Resistant to changeable climate KFW, 30 cycles						
Mounting position			any, but please avoid vertical mounting position wherever possible						
			1010		1512				
Resistance to vibration: ($\pm 1 \mathrm{~mm}, 50 \mathrm{~Hz}$) multiple of g			4		8				
Mounting - onto contactor - with AB.. mounting kit			hooking beneath the contactor, screwing on its main terminals by screws: $2 \times \mathrm{M} 4$ or $\boldsymbol{Z} 35 \mathrm{~mm}$ EN 50022						
Connection terminals and attachment type Main conductors (motor side) - Screw terminals - Screw terminal - with terminal block - with busbars or cable lugs			$\begin{gathered} \text { M3. } 5 \\ - \\ \hline \end{gathered}$		TA25DU set 0.1...0.16 A to $18 . . .25 \mathrm{~A}$ M4 -	ting ranges: A24... 32 A M5	$\begin{gathered} \text { M6 } \\ - \\ - \end{gathered}$		
- Connection cross-sections - single-core or stranded AWG - flexible with wire end ferrule AWG - busbars AWG			$\begin{gathered} 2 \times 18 \ldots 14 \\ 2 \times 18 \ldots 14 \\ - \end{gathered}$		$\begin{array}{\|c\|c\|c\|} \hline 2 \times 16 \ldots 10 & 2 \times 16 \ldots 10 \\ 2 \times 16 \ldots 10 & 2 \times 16 \ldots 10 \\ - & - \\ \hline \end{array}$		$\begin{aligned} & 1 \times 14 \ldots 4 \text { or } 2 \times 14 \ldots 6 \\ & 1 \times 14 \ldots 4 \text { or } 2 \times 14 \ldots 8 \end{aligned}$		
Connections and auxiliary connectors - Screw terminal (screw size) - with self-disengaging clamping piece			M 3.5						
- Connection cross-section - single-core or stranded - flexible with wire end ferr		AWG AWG	$\begin{aligned} & 2 \times 18 . . \\ & 2 \times 18 . \end{aligned}$		$\begin{aligned} & 2 \times 18 \ldots 14 \\ & 2 \times 18 \ldots 1 \end{aligned}$				
Enclosure to IEC 144, IEC 529			All terminals are safe from finger-touch and safe from touch by the back of the hand to VDE 0106, Part 100 (no extra terminal shrouds are required up to and including TA110DU)						
Technical data of the conducting paths									
Type	T7DU	TA25DU	TA42DU	TA75DU	TA80DU	TA110DU	TA200DU	TA450DU	TA450SU
Number of paths			$3 \times$						
Setting ranges			see ordering details						
Tripping class to IEC 947-4-1 / VDE 0660, Part 1021			10-20			10			30
Frequency range $\quad \mathrm{Hz}$			$0 \ldots 400$					50/60	
Switching frequency without early tripping			up to 15 ops ./h or $60 \mathrm{ops} . / \mathrm{h}$ with 40% if the breaking current does not exceed 6 x In and the starting time does not exceed 1 s						

Thermal overload relays T...
 Technical data

Load rating of auxiliary contacts

Type		T7DU		TA25DU ...TA450DU/SU	
Auxiliary switch		$\begin{gathered} \text { NC } \\ 95-96 \end{gathered}$	$\begin{gathered} \text { NO } \\ 97-98 \end{gathered}$	$\begin{gathered} \text { NC } \\ 95-96 \end{gathered}$	$\begin{gathered} \mathrm{NO} \\ 97-98 \end{gathered}$
Rated operating voltage $\mathrm{U}_{\text {e }}$	V	500	500	500	
Rated thermal current $\mathrm{I}_{\text {th }}$	A	6	6	10	6
Rated operating current le at AC 15 to 240 V	A	1.5	1.5	3	1.5
at AC 15 to 440 V	A	0.7	0.5	1.9	0.95
at AC 15 to 500 V	A	0.5	0.3	1	0.75
at DC 13 to 24 V	A	-	-	1.25	0.42
to 60 V	A	-	-	0.50	0.17
to 120 V	A	-	-	0.25	0.08
to 250 V	A	0.2	0.02	0.12	0.04
Maximum potential difference	AC V	500		500	
between the NO and NC contacts	DC V	440		440	
Short-circuit protection	gL/gG A	4	4	10	6
STOTZ circuit-breaker type:					
S271	A	K1	K1	K3	K1
S281	A	K1	K1	K3	K1

Function of the thermal overload relays

Position of the connection terminals
TA25DU, TA42DU,
TA75DU, TA80DU

Press blue button	Contacts	Relay tripped		Relay not tripped	
		Manual	Automatic	Manual	Automatic
	$\begin{aligned} & \text { NC 95-96 } \\ & \text { NO 97-98 } \end{aligned}$	open closed	open closed	closed open	closed open
Button R	NC 95-96 NO 97-98	Reset	-	-	-
		closes when Button's pressed	-	-	-
		opens when Button's pressed	-	-	-
Button R/O	NC 95-96 NO 97-98	Reset	-	-	-
		closes when Button's released	-	opens when Button's pressed closes when Button's released	opens when Button's pressed closes when Button's released
		opens when Button's pressed	-	-	-

TA450DU/SU

